
The PERL Programming Language

Larry Wall

<lwall@netlabs.com>

ABSTRACT

The Practical Extraction and Report Language (perl) is an interpreted language
optimized for scanning arbitrary text files, extracting information from those text files,
and printing reports based on that information. It is also a good language for many sys-
tem management tasks. The language is intended to be practical (easy to use, efficient,
complete) rather than beautiful (tiny, elegant, minimal). It combines (in the author’s
opinion, anyway) some of the best features of C,sed, awk, andsh, so people familiar with
those languages should have little difficulty with it. (Language historians will also note
some vestiges ofcsh, Pascal, and even BASIC-PLUS.) Expression syntax corresponds
quite closely to C expression syntax. Unlike most Unix utilities,perl does not arbitrarily
limit the size of your data— if you’ve got the memory,perl can slurp in your whole file
as a single string. Recursion is of unlimited depth. And the hash tables used by associa-
tive arrays grow as necessary to prevent degraded performance.Perl uses sophisticated
pattern matching techniques to scan large amounts of data very quickly. Although opti-
mized for scanning text,perl can also deal with binary data, and can make dbm files look
like associative arrays (where dbm is available). Setuidperl scripts are safer than C pro-
grams through a dataflow tracing mechanism which prevents many stupid security holes.
If you have a problem that would ordinarily usesedor awk or sh, but it exceeds their
capabilities or must run a little faster, and you don’t want to write the silly thing in C,
thenperl may be for you. There are also translators to turn yoursed andawk scripts
into perl scripts.

1. Data Types and Objects
Perl has three data types: scalars, arrays of scalars, and associative arrays of scalars. Normal arrays

are indexed by number, and associative arrays by string.

The interpretation of operations and values in perl sometimes depends on the requirements of the
context around the operation or value. There are three major contexts: string, numeric and array. Certain
operations return array values in contexts wanting an array, and scalar values otherwise. (If this is true of
an operation it will be mentioned in the documentation for that operation.) Operations which return scalars
don’t care whether the context is looking for a string or a number, but scalar variables and values are inter-
preted as strings or numbers as appropriate to the context. A scalar is interpreted as TRUE in the boolean
sense if it is not the null string or 0. Booleans returned by operators are 1 for true and 0 or ´´ (the null
string) for false.

There are actually two varieties of null string: defined and undefined. Undefined null strings are
returned when there is no real value for something, such as when there was an error, or at end of file, or
when you refer to an uninitialized variable or element of an array. An undefined null string may become
defined the first time you access it, but prior to that you can use the defined() operator to determine whether
the value is defined or not.

References to scalar variables always begin with ‘$’, even when referring to a scalar that is part of an
array. Thus:

SMM:19-2 The PERL Programming Language

$days # a simple scalar variable
$days[28] # 29th element of array @days
$days{´Feb´} # one value from an associative array
$#days # last index of array @days

but entire arrays or array slices are denoted by ‘@’:

@days # ($days[0], $days[1], . . . $days[n])
@days[3,4,5] # same as @days[3. .5]
@days{’a’,’c’} # same as ($days{’a’},$days{’c’})

and entire associative arrays are denoted by ‘%’:

%days # (key1, val1, key2, val2 . . .)

Any of these eight constructs may serve as an lvalue, that is, may be assigned to. (It also turns out
that an assignment is itself an lvalue in certain contexts— see examples under s, tr and chop.) Assignment
to a scalar evaluates the righthand side in a scalar context, while assignment to an array or array slice evalu-
ates the righthand side in an array context.

You may find the length of array @days by evaluating ‘‘$#days’’, as incsh. (Actually, it’s not the
length of the array, it’s the subscript of the last element, since there is (ordinarily) a 0th element.) Assign-
ing to $#days changes the length of the array. Shortening an array by this method does not actually destroy
any values. Lengthening an array that was previously shortened recovers the values that were in those ele-
ments. You can also gain some measure of efficiency by preextending an array that is going to get big.
(You can also extend an array by assigning to an element that is off the end of the array. This differs from
assigning to $#whatever in that intervening values are set to null rather than recovered.) You can truncate
an array down to nothing by assigning the null list () to it. The following are exactly equivalent

@whatever = ();
$#whatever = $[− 1;

If you evaluate an array in a scalar context, it returns the length of the array. The following is always
true:

scalar(@whatever) == $#whatever − $[+ 1;

If you evaluate an associative array in a scalar context, it returns a value which is true if and only if the
array contains any elements. (If there are any elements, the value returned is a string consisting of the num-
ber of used buckets and the number of allocated buckets, separated by a slash.)

Multi-dimensional arrays are not directly supported, but see the discussion of the $; variable later for
a means of emulating multiple subscripts with an associative array. You could also write a subroutine to
turn multiple subscripts into a single subscript.

Every data type has its own namespace. You can, without fear of conflict, use the same name for a
scalar variable, an array, an associative array, a filehandle, a subroutine name, and/or a label. Since variable
and array references always start with ‘$’, ‘@’, or ‘%’, the ‘‘reserved’’ words aren’t in fact reserved with
respect to variable names. (They ARE reserved with respect to labels and filehandles, however, which
don’t hav e an initial special character. Hint: you could say open(LOG,´logfile´) rather than
open(log,´logfile´). Using uppercase filehandles also improves readability and protects you from conflict
with future reserved words.) Case IS significant— ‘‘FOO’’, ‘‘Foo’’ and ‘‘foo’’ are all different names.
Names which start with a letter may also contain digits and underscores. Names which do not start with a
letter are limited to one character, e.g. ‘‘$%’’ or ‘‘$$’’. (Most of the one character names have a predefined
significance toperl. More later.)

Numeric literals are specified in any of the usual floating point or integer formats:

The PERL Programming Language SMM:19-3

12345
12345.67
.23E-10
0xffff # hex
0377 # octal
4_294_967_296

String literals are delimited by either single or double quotes. They work much like shell quotes: double-
quoted string literals are subject to backslash and variable substitution; single-quoted strings are not (except
for \´ and \\). The usual backslash rules apply for making characters such as newline, tab, etc., as well as
some more exotic forms:

\t tab
\n newline
\r return
\f form feed
\b backspace
\a alarm (bell)
\e escape
\033 octal char
\x1b hex char
\c[control char
\l lowercase next char
\u uppercase next char
\L lowercase till \E
\U uppercase till \E
\E end case modification

You can also embed newlines directly in your strings, i.e. they can end on a different line than they begin.
This is nice, but if you forget your trailing quote, the error will not be reported untilperl finds another line
containing the quote character, which may be much further on in the script. Variable substitution inside
strings is limited to scalar variables, normal array values, and array slices. (In other words, identifiers
beginning with $ or @, followed by an optional bracketed expression as a subscript.) The following code
segment prints out ‘‘The price is $100.’’

$Price = ´$100´; # not interpreted
print "The price is $Price.\ n"; # interpreted

Note that you can put curly brackets around the identifier to delimit it from following alphanumerics. Also
note that a single quoted string must be separated from a preceding word by a space, since single quote is a
valid character in an identifier (see Packages).

Tw o special literals are _ _LINE_ _ and _ _FILE_ _, which represent the current line number and file-
name at that point in your program. They may only be used as separate tokens; they will not be interpo-
lated into strings. In addition, the token _ _END_ _ may be used to indicate the logical end of the script
before the actual end of file. Any following text is ignored, but may be read via the DAT A filehandle. (The
DATA filehandle may read data only from the main script, but not from any required file or evaluated
string.) The two control characters ˆD and ˆZ are synonyms for _ _END_ _.

A word that doesn’t hav e any other interpretation in the grammar will be treated as if it had single
quotes around it. For this purpose, a word consists only of alphanumeric characters and underline, and
must start with an alphabetic character. As with filehandles and labels, a bare word that consists entirely of
lowercase letters risks conflict with future reserved words, and if you use the−w switch, Perl will warn you
about any such words.

Array values are interpolated into double-quoted strings by joining all the elements of the array with
the delimiter specified in the $" variable, space by default. (Since in versions of perl prior to 3.0 the @

SMM:19-4 The PERL Programming Language

character was not a metacharacter in double-quoted strings, the interpolation of @array, $array[EXPR],
@array[LIST], $array{EXPR}, or @array{LIST} only happens if array is referenced elsewhere in the pro-
gram or is predefined.) The following are equivalent:

$temp = join($",@ARGV);
system "echo $temp";

system "echo @ARGV";

Within search patterns (which also undergo double-quotish substitution) there is a bad ambiguity: Is
/$foo[bar]/ to be interpreted as /${foo}[bar]/ (where [bar] is a character class for the regular expression) or
as /${foo[bar]}/ (where [bar] is the subscript to array @foo)? If @foo doesn’t otherwise exist, then it’s
obviously a character class. If @foo exists, perl takes a good guess about [bar], and is almost always right.
If it does guess wrong, or if you’re just plain paranoid, you can force the correct interpretation with curly
brackets as above.

A line-oriented form of quoting is based on the shell here-is syntax. Following a << you specify a
string to terminate the quoted material, and all lines following the current line down to the terminating
string are the value of the item. The terminating string may be either an identifier (a word), or some quoted
text. If quoted, the type of quotes you use determines the treatment of the text, just as in regular quoting.
An unquoted identifier works like double quotes. There must be no space between the << and the identifier.
(If you put a space it will be treated as a null identifier, which is valid, and matches the first blank line— see
Merry Christmas example below.) The terminating string must appear by itself (unquoted and with no sur-
rounding whitespace) on the terminating line.

print <<EOF; # same as above
The price is $Price.
EOF

print <<"EOF"; # same as above
The price is $Price.
EOF

print << x 10; # null identifier is delimiter
Merry Christmas!

print <<‘EOC‘; # execute commands
echo hi there
echo lo there
EOC

print <<foo, <<bar; # you can stack them
I said foo.
foo
I said bar.
bar

Array literals are denoted by separating individual values by commas, and enclosing the list in parentheses:

(LIST)

In a context not requiring an array value, the value of the array literal is the value of the final element, as in
the C comma operator. For example,

The PERL Programming Language SMM:19-5

@foo = (´cc´, ´−E´, $bar);

assigns the entire array value to array foo, but

$foo = (´cc´, ´−E´, $bar);

assigns the value of variable bar to variable foo. Note that the value of an actual array in a scalar context is
the length of the array; the following assigns to $foo the value 3:

@foo = (´cc´, ´−E´, $bar);
$foo = @foo; # $foo gets 3

You may have an optional comma before the closing parenthesis of an array literal, so that you can say:

@foo = (
1,
2,
3,

);

When a LIST is evaluated, each element of the list is evaluated in an array context, and the resulting array
value is interpolated into LIST just as if each individual element were a member of LIST. Thus arrays lose
their identity in a LIST— the list

(@foo,@bar,&SomeSub)

contains all the elements of @foo followed by all the elements of @bar, followed by all the elements
returned by the subroutine named SomeSub.

A list value may also be subscripted like a normal array. Examples:

$time = (stat($file))[8]; # stat returns array value
$digit = (’a’,’b’,’c’,’d’,’e’,’f ’)[$digit-10];
return (pop(@foo),pop(@foo))[0];

Array lists may be assigned to if and only if each element of the list is an lvalue:

($a, $b, $c) = (1, 2, 3);

($map{´red´}, $map{´blue´}, $map{´green´}) = (0x00f, 0x0f0, 0xf00);

The final element may be an array or an associative array:

($a, $b, @rest) = split;
local($a, $b, %rest) = @_;

You can actually put an array anywhere in the list, but the first array in the list will soak up all the values,
and anything after it will get a null value. This may be useful in a local().

An associative array literal contains pairs of values to be interpreted as a key and a value:

same as map assignment above
%map = (’red’,0x00f,’blue’,0x0f0,’green’,0xf00);

Array assignment in a scalar context returns the number of elements produced by the expression on the
right side of the assignment:

SMM:19-6 The PERL Programming Language

$x = (($foo,$bar) = (3,2,1)); # set $x to 3, not 2

There are several other pseudo-literals that you should know about. If a string is enclosed by back-
ticks (grave accents), it first undergoes variable substitution just like a double quoted string. It is then inter-
preted as a command, and the output of that command is the value of the pseudo-literal, like in a shell. In a
scalar context, a single string consisting of all the output is returned. In an array context, an array of values
is returned, one for each line of output. (You can set $/ to use a different line terminator.) The command is
executed each time the pseudo-literal is evaluated. The status value of the command is returned in $? (see
Predefined Names for the interpretation of $?). Unlike incsh, no translation is done on the return
data— newlines remain newlines. Unlike in any of the shells, single quotes do not hide variable names in
the command from interpretation. To pass a $ through to the shell you need to hide it with a backslash.

Evaluating a filehandle in angle brackets yields the next line from that file (newline included, so it’s
never false until EOF, at which time an undefined value is returned). Ordinarily you must assign that value
to a variable, but there is one situation where an automatic assignment happens. If (and only if) the input
symbol is the only thing inside the conditional of awhile loop, the value is automatically assigned to the
variable ‘‘$_’’. (This may seem like an odd thing to you, but you’ll use the construct in almost everyperl
script you write.) Anyway, the following lines are equivalent to each other:

while ($_ = <STDIN>) { print; }
while (<STDIN>) { print; }
for (; <STDIN>;) { print; }
print while $_ = <STDIN>;
print while <STDIN>;

The filehandlesSTDIN, STDOUT andSTDERRare predefined. (The filehandlesstdin, stdout andstderr
will also work except in packages, where they would be interpreted as local identifiers rather than global.)
Additional filehandles may be created with theopen function.

If a <FILEHANDLE> is used in a context that is looking for an array, an array consisting of all the
input lines is returned, one line per array element. It’s easy to make a LARGE data space this way, so use
with care.

The null filehandle <> is special and can be used to emulate the behavior ofsedandawk. Input from
<> comes either from standard input, or from each file listed on the command line. Here’s how it works:
the first time <> is evaluated, the ARGV array is checked, and if it is null, $ARGV[0] is set to ´-´, which
when opened gives you standard input. The ARGV array is then processed as a list of filenames. The loop

while (<>) {
. . . #code for each line

}

is equivalent to the following Perl-like pseudo code:

unshift(@ARGV, ´−´) if $#ARGV < $[;
while ($ARGV = shift) {

open(ARGV, $ARGV);
while (<ARGV>) {

. . . #code for each line
}

}

except that it isn’t as cumbersome to say, and will actually work. It really does shift array ARGV and put
the current filename into variable ARGV. It also uses filehandle ARGV internally— <> is just a synonym
for <ARGV>, which is magical. (The pseudo code above doesn’t work because it treats <ARGV> as non-
magical.)

The PERL Programming Language SMM:19-7

You can modify @ARGV before the first <> as long as the array ends up containing the list of file-
names you really want. Line numbers ($.) continue as if the input was one big happy file. (But see exam-
ple under eof for how to reset line numbers on each file.)

If you want to set @ARGV to your own list of files, go right ahead. If you want to pass switches into
your script, you can put a loop on the front like this:

while ($_ = $ARGV[0], / ˆ−/) {
shift;

last if / ˆ− −$ / ;
/ ˆ−D (.*)/ && ($debug = $1);
/ ˆ−v / && $verbose++;
. . . #other switches

}
while (<>) {

. . . #code for each line
}

The <> symbol will return FALSE only once. If you call it again after this it will assume you are process-
ing another @ARGV list, and if you haven’t set @ARGV, will input fromSTDIN.

If the string inside the angle brackets is a reference to a scalar variable (e.g. <$foo>), then that vari-
able contains the name of the filehandle to input from.

If the string inside angle brackets is not a filehandle, it is interpreted as a filename pattern to be
globbed, and either an array of filenames or the next filename in the list is returned, depending on context.
One level of $ interpretation is done first, but you can’t say <$foo> because that’s an indirect filehandle as
explained in the previous paragraph. You could insert curly brackets to force interpretation as a filename
glob: <${foo}>. Example:

while (<*.c>) {
chmod 0644, $_;

}

is equivalent to

open(foo, "echo *.c tr −s ´ \t\r\f´ ´\\012\\012\\012\\012´");
while (<foo>) {

chop;
chmod 0644, $_;

}

In fact, it’s currently implemented that way. (Which means it will not work on filenames with spaces in
them unless you have /bin/csh on your machine.) Of course, the shortest way to do the above is:

chmod 0644, <*.c>;

2. Syntax
A perl script consists of a sequence of declarations and commands. The only things that need to be

declared inperl are report formats and subroutines. See the sections below for more information on those
declarations. All uninitialized user-created objects are assumed to start with a null or 0 value until they are
defined by some explicit operation such as assignment. The sequence of commands is executed just once,
unlike in sed andawk scripts, where the sequence of commands is executed for each input line. While this
means that you must explicitly loop over the lines of your input file (or files), it also means you have much
more control over which files and which lines you look at. (Actually, I’m lying— it is possible to do an

SMM:19-8 The PERL Programming Language

implicit loop with either the−n or −p switch.)

A declaration can be put anywhere a command can, but has no effect on the execution of the primary
sequence of commands— declarations all take effect at compile time. Typically all the declarations are put
at the beginning or the end of the script.

Perl is, for the most part, a free-form language. (The only exception to this is format declarations,
for fairly obvious reasons.) Comments are indicated by the # character, and extend to the end of the line. If
you attempt to use /* */ C comments, it will be interpreted either as division or pattern matching, depending
on the context. So don’t do that.

3. Compound statements
In perl, a sequence of commands may be treated as one command by enclosing it in curly brackets.

We will call this a BLOCK.

The following compound commands may be used to control flow:

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK . . . else BLOCK
LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK
LABEL for (EXPR; EXPR; EXPR) BLOCK
LABEL foreach VAR (ARRAY) BLOCK
LABEL BLOCK continue BLOCK

Note that, unlike C and Pascal, these are defined in terms of BLOCKs, not statements. This means that the
curly brackets arerequired— no dangling statements allowed. If you want to write conditionals without
curly brackets there are several other ways to do it. The following all do the same thing:

if (!open(foo)) { die "Can’t open $foo: $!"; }
die "Can’t open $foo: $!" unless open(foo);
open(foo) die "Can’t open $foo: $!"; # foo or bust!
open(foo) ? ´hi mom´ : die "Can’t open $foo: $!";

a bit exotic, that last one

The if statement is straightforward. Since BLOCKs are always bounded by curly brackets, there is
never any ambiguity about whichif anelse goes with. If you useunlessin place ofif, the sense of the test
is reversed.

Thewhile statement executes the block as long as the expression is true (does not evaluate to the null
string or 0). The LABEL is optional, and if present, consists of an identifier followed by a colon. The
LABEL identifies the loop for the loop control statementsnext, last, and redo (see below). If there is a
continueBLOCK, it is always executed just before the conditional is about to be evaluated again, similarly
to the third part of afor loop in C. Thus it can be used to increment a loop variable, even when the loop
has been continued via thenext statement (similar to the C ‘‘continue’’ statement).

If the wordwhile is replaced by the worduntil, the sense of the test is reversed, but the conditional is
still tested before the first iteration.

In either theif or thewhile statement, you may replace ‘‘(EXPR)’’ with a BLOCK, and the condi-
tional is true if the value of the last command in that block is true.

Thefor loop works exactly like the correspondingwhile loop:

The PERL Programming Language SMM:19-9

for ($i = 1; $i < 10; $i++) {
. . .

}

is the same as

$i = 1;
while ($i < 10) {

. . .
} continue {

$i++;
}

The foreach loop iterates over a normal array value and sets the variable VAR to be each element of
the array in turn. The variable is implicitly local to the loop, and regains its former value upon exiting the
loop. The ‘‘foreach’’ keyword is actually identical to the ‘‘for’’ keyword, so you can use ‘‘foreach’’ for
readability or ‘‘for’’ for brevity. If VAR is omitted, $_ is set to each value. If ARRAY is an actual array (as
opposed to an expression returning an array value), you can modify each element of the array by modifying
VAR inside the loop. Examples:

for (@ary) { s/foo/bar/; }

foreach $elem (@elements) {
$elem *= 2;

}

for ((10,9,8,7,6,5,4,3,2,1,´BOOM´)) {
print $_, "\n"; sleep(1);

}

for (1..15) { print "Merry Christmas\n"; }

foreach $item (split(/:[\\\n:]*/, $ENV{´TERMCAP´})) {
print "Item: $item\n";

}

The BLOCK by itself (labeled or not) is equivalent to a loop that executes once. Thus you can use
any of the loop control statements in it to leave or restart the block. Thecontinueblock is optional. This
construct is particularly nice for doing case structures.

foo: {
if (/ˆabc/) { $abc = 1; last foo; }
if (/ˆdef/) { $def = 1; last foo; }
if (/ˆxyz/) { $xyz = 1; last foo; }
$nothing = 1;

}

There is no official switch statement in perl, because there are already several ways to write the equivalent.
In addition to the above, you could write

SMM:19-10 The PERL Programming Language

foo: {
$abc = 1, last foo if /ˆabc/;
$def = 1, last foo if /ˆdef/;
$xyz = 1, last foo if /ˆxyz/;
$nothing = 1;

}

or

foo: {
/ˆabc/ && do { $abc = 1; last foo; };
/ˆdef/ && do { $def = 1; last foo; };
/ˆxyz/ && do { $xyz = 1; last foo; };
$nothing = 1;

}

or

foo: {
/ˆabc/ && ($abc = 1, last foo);
/ˆdef/ && ($def = 1, last foo);
/ˆxyz/ && ($xyz = 1, last foo);
$nothing = 1;

}

or even

if (/ˆabc/)
{ $abc = 1; }

elsif (/ˆdef/)
{ $def = 1; }

elsif (/ˆxyz/)
{ $xyz = 1; }

else
{$nothing = 1;}

As it happens, these are all optimized internally to a switch structure, so perl jumps directly to the desired
statement, and you needn’t worry about perl executing a lot of unnecessary statements when you have a
string of 50 elsifs, as long as you are testing the same simple scalar variable using ==, eq, or pattern match-
ing as above. (If you’re curious as to whether the optimizer has done this for a particular case statement,
you can use the −D1024 switch to list the syntax tree before execution.)

4. Simple statements
The only kind of simple statement is an expression evaluated for its side effects. Every simple state-

ment must be terminated with a semicolon, unless it is the final statement in a block, in which case the
semicolon is optional. (Semicolon is still encouraged there if the block takes up more than one line).

Any simple statement may optionally be followed by a single modifier, just before the terminating
semicolon. The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR

The PERL Programming Language SMM:19-11

The if and unless modifiers have the expected semantics. Thewhile and until modifiers also have the
expected semantics (conditional evaluated first), except when applied to a do-BLOCK or a do-
SUBROUTINE command, in which case the block executes once before the conditional is evaluated. This
is so that you can write loops like:

do {
$_ = <STDIN>;
. . .

} until $_ eq ". \ n";

(See thedo operator below. Note also that the loop control commands described later will NOT work in
this construct, since modifiers don’t take loop labels. Sorry.)

5. Expressions
Sinceperl expressions work almost exactly like C expressions, only the differences will be men-

tioned here.

Here’s whatperl has that C doesn’t:

** The exponentiation operator.

**= The exponentiation assignment operator.

() The null list, used to initialize an array to null.

. Concatenation of two strings.

.= The concatenation assignment operator.

eq String equality (== is numeric equality). For a mnemonic just think of ‘‘eq’’ as a string. (If you
are used to theawk behavior of using == for either string or numeric equality based on the cur-
rent form of the comparands, beware! You must be explicit here.)

ne String inequality (!= is numeric inequality).

lt String less than.

gt String greater than.

le String less than or equal.

ge String greater than or equal.

cmp String comparison, returning -1, 0, or 1.

<=> Numeric comparison, returning -1, 0, or 1.

=˜ Certain operations search or modify the string ‘‘$_’’ by default. This operator makes that kind of
operation work on some other string. The right argument is a search pattern, substitution, or
translation. The left argument is what is supposed to be searched, substituted, or translated
instead of the default ‘‘$_’’. The return value indicates the success of the operation. (If the right
argument is an expression other than a search pattern, substitution, or translation, it is interpreted
as a search pattern at run time. This is less efficient than an explicit search, since the pattern must
be compiled every time the expression is evaluated.) The precedence of this operator is lower
than unary minus and autoincrement/decrement, but higher than everything else.

!˜ Just like =˜ except the return value is negated.

x The repetition operator. Returns a string consisting of the left operand repeated the number of
times specified by the right operand. In an array context, if the left operand is a list in parens, it
repeats the list.

print ´−´ x 80;# print row of dashes
print ´−´ x80;# illegal, x80 is identifier

print "\t" x ($tab/8), ´ ´ x ($tab%8);# tab over

SMM:19-12 The PERL Programming Language

@ones = (1) x 80;# an array of 80 1’s
@ones = (5) x @ones;# set all elements to 5

x= The repetition assignment operator. Only works on scalars.

. . The range operator, which is really two different operators depending on the context. In an array
context, returns an array of values counting (by ones) from the left value to the right value. This
is useful for writing ‘‘for (1..10)’’ loops and for doing slice operations on arrays.

In a scalar context, . . returns a boolean value. The operator is bistable, like a flip-flop, and emu-
lates the line-range (comma) operator of sed, awk, and various editors. Each . . operator main-
tains its own boolean state. It is false as long as its left operand is false. Once the left operand is
true, the range operator stays true until the right operand is true, AFTER which the range operator
becomes false again. (It doesn’t become false till the next time the range operator is evaluated. It
can test the right operand and become false on the same evaluation it became true (as in awk), but
it still returns true once. If you don’t want it to test the right operand till the next evaluation (as in
sed), use three dots (. . .) instead of two.) The right operand is not evaluated while the operator is
in the ‘‘false’’ state, and the left operand is not evaluated while the operator is in the ‘‘true’’ state.
The precedence is a little lower than and &&. The value returned is either the null string for
false, or a sequence number (beginning with 1) for true. The sequence number is reset for each
range encountered. The final sequence number in a range has the string ´E0´ appended to it,
which doesn’t affect its numeric value, but gives you something to search for if you want to
exclude the endpoint. You can exclude the beginning point by waiting for the sequence number
to be greater than 1. If either operand of scalar . . is static, that operand is implicitly compared to
the $. variable, the current line number. Examples:

As a scalar operator:
if (101 . . 200) { print; }# print 2nd hundred lines

next line if (1 . . /ˆ$/);# skip header lines

s/ˆ/> / if (/ˆ$/ . . eof());# quote body

As an array operator:
for (101 . . 200) { print; }# print $_ 100 times

@foo = @foo[$[. . $#foo];# an expensive no-op
@foo = @foo[$#foo-4 . . $#foo];# slice last 5 items

−x A file test. This unary operator takes one argument, either a filename or a filehandle, and tests the
associated file to see if something is true about it. If the argument is omitted, tests $_, except for
−t, which testsSTDIN. It returns 1 for true and ´´ for false, or the undefined value if the file
doesn’t exist. Precedence is higher than logical and relational operators, but lower than arith-
metic operators. The operator may be any of:

−rFile is readable by effective uid/gid.
−wFile is writable by effective uid/gid.
−xFile is executable by effective uid/gid.
−oFile is owned by effective uid.
−RFile is readable by real uid/gid.
−WFile is writable by real uid/gid.
−XFile is executable by real uid/gid.
−OFile is owned by real uid.
−eFile exists.
−zFile has zero size.
−sFile has non-zero size (returns size).

The PERL Programming Language SMM:19-13

−fFile is a plain file.
−dFile is a directory.
−lFile is a symbolic link.
−pFile is a named pipe (FIFO).
−SFile is a socket.
−bFile is a block special file.
−cFile is a character special file.
−uFile has setuid bit set.
−gFile has setgid bit set.
−kFile has sticky bit set.
−tFilehandle is opened to a tty.
−TFile is a text file.
−BFile is a binary file (opposite of −T).
−MAge of file in days when script started.
−ASame for access time.
−CSame for inode change time.

The interpretation of the file permission operators −r, −R, −w, −W, −x and −X is based solely on
the mode of the file and the uids and gids of the user. There may be other reasons you can’t actu-
ally read, write or execute the file. Also note that, for the superuser, −r, −R, −w and −W always
return 1, and −x and −X return 1 if any execute bit is set in the mode. Scripts run by the supe-
ruser may thus need to do a stat() in order to determine the actual mode of the file, or temporarily
set the uid to something else.

Example:

while (<>) {
chop;
next unless −f $_;# ignore specials
. . .
}

Note that −s/a/b/ does not do a negated substitution. Saying −exp($foo) still works as expected,
however— only single letters following a minus are interpreted as file tests.

The −T and −B switches work as follows. The first block or so of the file is examined for odd
characters such as strange control codes or metacharacters. If too many odd characters (>10%)
are found, it’s a −B file, otherwise it’s a −T file. Also, any file containing null in the first block is
considered a binary file. If −T or −B is used on a filehandle, the current stdio buffer is examined
rather than the first block. Both −T and −B return TRUE on a null file, or a file at EOF when test-
ing a filehandle.

If any of the file tests (or either stat operator) are given the special filehandle consisting of a solitary
underline, then the stat structure of the previous file test (or stat operator) is used, saving a system call.
(This doesn’t work with −t, and you need to remember that lstat and -l will leave values in the stat structure
for the symbolic link, not the real file.) Example:

print "Can do.\n" if -r $a -w _ -x _;

SMM:19-14 The PERL Programming Language

stat($filename);
print "Readable\n" if -r _;
print "Writable\n" if -w _;
print "Executable\n" if -x _;
print "Setuid\n" if -u _;
print "Setgid\n" if -g _;
print "Sticky\n" if -k _;
print "Text\n" if -T _;
print "Binary\n" if -B _;

Here is what C has thatperl doesn’t:

unary & Address-of operator.

unary * Dereference-address operator.

(TYPE) Type casting operator.

Like C, perl does a certain amount of expression evaluation at compile time, whenever it determines
that all of the arguments to an operator are static and have no side effects. In particular, string concatena-
tion happens at compile time between literals that don’t do variable substitution. Backslash interpretation
also happens at compile time. You can say

´Now is the time for all´ . " \ n" .
´good men to come to.´

and this all reduces to one string internally.

The autoincrement operator has a little extra built-in magic to it. If you increment a variable that is
numeric, or that has ever been used in a numeric context, you get a normal increment. If, however, the vari-
able has only been used in string contexts since it was set, and has a value that is not null and matches the
pattern /ˆ[a−zA−Z]*[0−9]*$/, the increment is done as a string, preserving each character within its range,
with carry:

print ++($foo = ´99´); # prints ‘100’
print ++($foo = ´a0´); # prints ‘a1’
print ++($foo = ´Az´); # prints ‘Ba’
print ++($foo = ´zz´); # prints ‘aaa’

The autodecrement is not magical.

The range operator (in an array context) makes use of the magical autoincrement algorithm if the
minimum and maximum are strings. You can say

@alphabet = (´A´ .. ´Z´);

to get all the letters of the alphabet, or

$hexdigit = (0 .. 9, ´a´ .. ´f´)[$num & 15];

to get a hexadecimal digit, or

@z2 = (´01´ .. ´31´); print @z2[$mday];

to get dates with leading zeros. (If the final value specified is not in the sequence that the magical incre-
ment would produce, the sequence goes until the next value would be longer than the final value specified.)

The and && operators differ from C’s in that, rather than returning 0 or 1, they return the last
value evaluated. Thus, a portable way to find out the home directory might be:

The PERL Programming Language SMM:19-15

$home = $ENV{’HOME’} $ENV{’LOGDIR’}
(getpwuid($<))[7] die "You’re homeless!\n";

Along with the literals and variables mentioned earlier, the operations in the following section can
serve as terms in an expression. Some of these operations take a LIST as an argument. Such a list can con-
sist of any combination of scalar arguments or array values; the array values will be included in the list as if
each individual element were interpolated at that point in the list, forming a longer single-dimensional array
value. Elements of the LIST should be separated by commas. If an operation is listed both with and with-
out parentheses around its arguments, it means you can either use it as a unary operator or as a function
call. To use it as a function call, the next token on the same line must be a left parenthesis. (There may be
intervening white space.) Such a function then has highest precedence, as you would expect from a func-
tion. If any token other than a left parenthesis follows, then it is a unary operator, with a precedence
depending only on whether it is a LIST operator or not. LIST operators have lowest precedence. All other
unary operators have a precedence greater than relational operators but less than arithmetic operators. See
the section on Precedence.

For operators that can be used in either a scalar or array context, failure is generally indicated in a
scalar context by returning the undefined value, and in an array context by returning the null list. Remem-
ber though that THERE IS NO GENERAL RULE FOR CONVERTING A LIST INTO A SCALAR. Each
operator decides which sort of scalar it would be most appropriate to return. Some operators return the
length of the list that would have been returned in an array context. Some operators return the first value in
the list. Some operators return the last value in the list. Some operators return a count of successful opera-
tions. In general, they do what you want, unless you want consistency.

/PATTERN/
See m/PATTERN/.

?PATTERN?
This is just like the /pattern/ search, except that it matches only once between calls to thereset
operator. This is a useful optimization when you only want to see the first occurrence of some-
thing in each file of a set of files, for instance. Only ?? patterns local to the current package are
reset.

accept(NEWSOCKET,GENERICSOCKET)
Does the same thing that the accept system call does. Returns true if it succeeded, false other-
wise. See example in section on Interprocess Communication.

alarm(SECONDS)

alarm SECONDS
Arranges to have a SIGALRM delivered to this process after the specified number of seconds
(minus 1, actually) have elapsed. Thus, alarm(15) will cause a SIGALRM at some point more
than 14 seconds in the future. Only one timer may be counting at once. Each call disables the
previous timer, and an argument of 0 may be supplied to cancel the previous timer without start-
ing a new one. The returned value is the amount of time remaining on the previous timer.

atan2(Y,X)Returns the arctangent of Y/X in the range −π to π.

bind(SOCKET,NAME)
Does the same thing that the bind system call does. Returns true if it succeeded, false otherwise.
NAME should be a packed address of the proper type for the socket. See example in section on
Interprocess Communication.

binmode(FILEHANDLE)

binmode FILEHANDLE
Arranges for the file to be read in ‘‘binary’’ mode in operating systems that distinguish between
binary and text files. Files that are not read in binary mode have CR LF sequences translated to
LF on input and LF translated to CR LF on output. Binmode has no effect under Unix. If FILE-
HANDLE is an expression, the value is taken as the name of the filehandle.

SMM:19-16 The PERL Programming Language

caller(EXPR)

caller Returns the context of the current subroutine call:

($package,$filename,$line) = caller;

With EXPR, returns some extra information that the debugger uses to print a stack trace. The
value of EXPR indicates how many call frames to go back before the current one.

chdir(EXPR)

chdir EXPR
Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to home direc-
tory. Returns 1 upon success, 0 otherwise. See example underdie.

chmod(LIST)

chmod LIST
Changes the permissions of a list of files. The first element of the list must be the numerical
mode. Returns the number of files successfully changed.

$cnt = chmod 0755, ´foo´, ´bar´;
chmod 0755, @executables;

chop(LIST)

chop(VARIABLE)

chop VARIABLE

chop Chops off the last character of a string and returns the character chopped. It’s used primarily to
remove the newline from the end of an input record, but is much more efficient than s/\n// because
it neither scans nor copies the string. If VARIABLE is omitted, chops $_. Example:

while (<>) {
chop;# avoid \n on last field
@array = split(/:/);
. . .
}

You can actually chop anything that’s an lvalue, including an assignment:

chop($cwd = `pwd`);
chop($answer = <STDIN>);

If you chop a list, each element is chopped. Only the value of the last chop is returned.

chown(LIST)

chown LIST
Changes the owner (and group) of a list of files. The first two elements of the list must be the
NUMERICAL uid and gid, in that order. Returns the number of files successfully changed.

$cnt = chown $uid, $gid, ´foo´, ´bar´;
chown $uid, $gid, @filenames;

The PERL Programming Language SMM:19-17

Here’s an example that looks up non-numeric uids in the passwd file:

print "User: ";
$user = <STDIN>;
chop($user);
print "Files: "
$pattern = <STDIN>;
chop($pattern);
open(pass, ´/etc/passwd´) die "Can’t open passwd: $!\n";
while (<pass>) {
($login,$pass,$uid,$gid) = split(/:/);
$uid{$login} = $uid;
$gid{$login} = $gid;
}
@ary = <${pattern}>;# get filenames
if ($uid{$user} eq ´´) {
die "$user not in passwd file";
}
else {
chown $uid{$user}, $gid{$user}, @ary;
}

chroot(FILENAME)

chroot FILENAME
Does the same as the system call of that name. If you don’t know what it does, don’t worry about
it. If FILENAME is omitted, does chroot to $_.

close(FILEHANDLE)

close FILEHANDLE
Closes the file or pipe associated with the file handle. You don’t hav e to close FILEHANDLE if
you are immediately going to do another open on it, since open will close it for you. (Seeopen.)
However, an explicit close on an input file resets the line counter ($.), while the implicit close
done byopen does not. Also, closing a pipe will wait for the process executing on the pipe to
complete, in case you want to look at the output of the pipe afterwards. Closing a pipe explicitly
also puts the status value of the command into $?. Example:

open(OUTPUT, ́sort >foo´);# pipe to sort
. . .# print stuff to output
close OUTPUT;# wait for sort to finish
open(INPUT, ´foo´);# get sort’s results

FILEHANDLE may be an expression whose value gives the real filehandle name.

closedir(DIRHANDLE)

closedir DIRHANDLE
Closes a directory opened by opendir().

connect(SOCKET,NAME)
Does the same thing that the connect system call does. Returns true if it succeeded, false other-
wise. NAME should be a package address of the proper type for the socket. See example in sec-
tion on Interprocess Communication.

SMM:19-18 The PERL Programming Language

cos(EXPR)

cos EXPRReturns the cosine of EXPR (expressed in radians). If EXPR is omitted takes cosine of $_.

crypt(PLAINTEXT,SALT)
Encrypts a string exactly like the crypt() function in the C library. Useful for checking the pass-
word file for lousy passwords. Only the guys wearing white hats should do this.

dbmclose(ASSOC_ARRAY)

dbmclose ASSOC_ARRAY
Breaks the binding between a dbm file and an associative array. The values remaining in the
associative array are meaningless unless you happen to want to know what was in the cache for
the dbm file. This function is only useful if you have ndbm.

dbmopen(ASSOC,DBNAME,MODE)
This binds a dbm or ndbm file to an associative array. ASSOC is the name of the associative
array. (Unlike normal open, the first argument is NOT a filehandle, even though it looks like
one). DBNAME is the name of the database (without the .dir or .pag extension). If the database
does not exist, it is created with protection specified by MODE (as modified by the umask). If
your system only supports the older dbm functions, you may perform only one dbmopen in your
program. If your system has neither dbm nor ndbm, calling dbmopen produces a fatal error.

Values assigned to the associative array prior to the dbmopen are lost. A certain number of val-
ues from the dbm file are cached in memory. By default this number is 64, but you can increase it
by preallocating that number of garbage entries in the associative array before the dbmopen. You
can flush the cache if necessary with the reset command.

If you don’t hav e write access to the dbm file, you can only read associative array variables, not
set them. If you want to test whether you can write, either use file tests or try setting a dummy
array entry inside an eval, which will trap the error.

Note that functions such as keys() and values() may return huge array values when used on large
dbm files. You may prefer to use the each() function to iterate over large dbm files. Example:

print out history file offsets
dbmopen(HIST,’/usr/lib/news/history’,0666);
while (($key,$val) = each %HIST) {
print $key, ’ = ’, unpack(’L’,$val), "\n";
}
dbmclose(HIST);

defined(EXPR)

defined EXPR
Returns a boolean value saying whether the lvalue EXPR has a real value or not. Many opera-
tions return the undefined value under exceptional conditions, such as end of file, uninitialized
variable, system error and such. This function allows you to distinguish between an undefined
null string and a defined null string with operations that might return a real null string, in particu-
lar referencing elements of an array. You may also check to see if arrays or subroutines exist.
Use on predefined variables is not guaranteed to produce intuitive results. Examples:

print if defined $switch{’D’};
print "$val\n" while defined($val = pop(@ary));
die "Can’t readlink $sym: $!"
unless defined($value = readlink $sym);
eval ’@foo = ()’ if defined(@foo);
die "No XYZ package defined" unless defined %_XYZ;
sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }

The PERL Programming Language SMM:19-19

See also undef.

delete $ASSOC{KEY}
Deletes the specified value from the specified associative array. Returns the deleted value, or the
undefined value if nothing was deleted. Deleting from $ENV{} modifies the environment.
Deleting from an array bound to a dbm file deletes the entry from the dbm file.

The following deletes all the values of an associative array:

foreach $key (keys %ARRAY) {
delete $ARRAY{$key};
}

(But it would be faster to use theresetcommand. Saying undef %ARRAY is faster yet.)

die(LIST)

die LIST Outside of an eval, prints the value of LIST toSTDERRand exits with the current value of $!
(errno). If $! is 0, exits with the value of ($? >> 8) (`command` status). If ($? >> 8) is 0, exits
with 255. Inside an eval, the error message is stuffed into $@ and the eval is terminated with the
undefined value.

Equivalent examples:

die "Can’t cd to spool: $!\n" unless chdir ´/usr/spool/news´;

chdir ´/usr/spool/newś die "Can’t cd to spool: $!\n"

If the value of EXPR does not end in a newline, the current script line number and input line
number (if any) are also printed, and a newline is supplied. Hint: sometimes appending ‘‘,
stopped’’ to your message will cause it to make better sense when the string ‘‘at foo line 123’’ is
appended. Suppose you are running script ‘‘canasta’’.

die "/etc/games is no good";
die "/etc/games is no good, stopped";

produce, respectively

/etc/games is no good at canasta line 123.
/etc/games is no good, stopped at canasta line 123.

See alsoexit.

do BLOCK
Returns the value of the last command in the sequence of commands indicated by BLOCK.
When modified by a loop modifier, executes the BLOCK once before testing the loop condition.
(On other statements the loop modifiers test the conditional first.)

do SUBROUTINE (LIST)
Executes a SUBROUTINE declared by asub declaration, and returns the value of the last expres-
sion evaluated in SUBROUTINE. If there is no subroutine by that name, produces a fatal error.
(You may use the ‘‘defined’’ operator to determine if a subroutine exists.) If you pass arrays as
part of LIST you may wish to pass the length of the array in front of each array. (See the section
on subroutines later on.) The parentheses are required to avoid confusion with the ‘‘do EXPR’’
form.

SUBROUTINE may also be a single scalar variable, in which case the name of the subroutine to
execute is taken from the variable.

SMM:19-20 The PERL Programming Language

As an alternate (and preferred) form, you may call a subroutine by prefixing the name with an
ampersand: &foo(@args). If you aren’t passing any arguments, you don’t hav e to use parenthe-
ses. If you omit the parentheses, no @_ array is passed to the subroutine. The & form is also
used to specify subroutines to the defined and undef operators:

if (defined &$var) { &$var($parm); undef &$var; }

do EXPR Uses the value of EXPR as a filename and executes the contents of the file as aperl script. Its
primary use is to include subroutines from aperl subroutine library.

do ´stat.pl´;

is just like

eval `cat stat.pl`;

except that it’s more efficient, more concise, keeps track of the current filename for error mes-
sages, and searches all the−I libraries if the file isn’t in the current directory (see also the @INC
array in Predefined Names). It’s the same, however, in that it does reparse the file every time you
call it, so if you are going to use the file inside a loop you might prefer to use −P and #include, at
the expense of a little more startup time. (The main problem with #include is that cpp doesn’t
grok # comments— a workaround is to use ‘‘;#’’ for standalone comments.) Note that the follow-
ing are NOT equivalent:

do $foo;# eval a file
do $foo();# call a subroutine

Note that inclusion of library routines is better done with the ‘‘require’’ operator.

dump LABEL
This causes an immediate core dump. Primarily this is so that you can use the undump program
to turn your core dump into an executable binary after having initialized all your variables at the
beginning of the program. When the new binary is executed it will begin by executing a "goto
LABEL" (with all the restrictions that goto suffers). Think of it as a goto with an intervening
core dump and reincarnation. If LABEL is omitted, restarts the program from the top. WARN-
ING: any files opened at the time of the dump will NOT be open any more when the program is
reincarnated, with possible resulting confusion on the part of perl. See also −u.

Example:

The PERL Programming Language SMM:19-21

#!/usr/bin/perl
require ’getopt.pl’;
require ’stat.pl’;
%days = (

’Sun’,1,
’Mon’,2,
’Tue’,3,
’Wed’,4,
’Thu’,5,
’Fri’,6,
’Sat’,7);

dump QUICKSTART if $ARGV[0] eq ’-d’;

QUICKSTART:
do Getopt(’f’);

each(ASSOC_ARRAY)

each ASSOC_ARRAY
Returns a 2 element array consisting of the key and value for the next value of an associative
array, so that you can iterate over it. Entries are returned in an apparently random order. When
the array is entirely read, a null array is returned (which when assigned produces a FALSE (0)
value). The next call to each() after that will start iterating again. The iterator can be reset only
by reading all the elements from the array. You must not modify the array while iterating over it.
There is a single iterator for each associative array, shared by all each(), keys() and values() func-
tion calls in the program. The following prints out your environment like the printenv program,
only in a different order:

while (($key,$value) = each %ENV) {
print "$key=$value\n";
}

See also keys() and values().

eof(FILEHANDLE)

eof()

eof Returns 1 if the next read on FILEHANDLE will return end of file, or if FILEHANDLE is not
open. FILEHANDLE may be an expression whose value gives the real filehandle name. (Note
that this function actually reads a character and then ungetc’s it, so it is not very useful in an inter-
active context.) An eof without an argument returns the eof status for the last file read. Empty
parentheses () may be used to indicate the pseudo file formed of the files listed on the command
line, i.e. eof() is reasonable to use inside a while (<>) loop to detect the end of only the last file.
Use eof(ARGV) or eof without the parentheses to test EACH file in a while (<>) loop. Exam-
ples:

insert dashes just before last line of last file
while (<>) {
if (eof()) {
print "− − − − − − − − − − − − −−\n";
}
print;
}

SMM:19-22 The PERL Programming Language

reset line numbering on each input file
while (<>) {
print "$.\t$_";
if (eof) {# Not eof().
close(ARGV);
}
}

eval(EXPR)

eval EXPR

eval BLOCK
EXPR is parsed and executed as if it were a littleperl program. It is executed in the context of
the currentperl program, so that any variable settings, subroutine or format definitions remain
afterwards. The value returned is the value of the last expression evaluated, just as with subrou-
tines. If there is a syntax error or runtime error, or a die statement is executed, an undefined value
is returned by eval, and $@ is set to the error message. If there was no error, $@ is guaranteed to
be a null string. If EXPR is omitted, evaluates $_. The final semicolon, if any, may be omitted
from the expression.

Note that, since eval traps otherwise-fatal errors, it is useful for determining whether a particular
feature (such as dbmopen or symlink) is implemented. It is also Perl’s exception trapping mecha-
nism, where the die operator is used to raise exceptions.

If the code to be executed doesn’t vary, you may use the eval-BLOCK form to trap run-time
errors without incurring the penalty of recompiling each time. The error, if any, is still returned
in $@. Evaluating a single-quoted string (as EXPR) has the same effect, except that the eval-
EXPR form reports syntax errors at run time via $@, whereas the eval-BLOCK form reports syn-
tax errors at compile time. The eval-EXPR form is optimized to eval-BLOCK the first time it
succeeds. (Since the replacement side of a substitution is considered a single-quoted string when
you use the e modifier, the same optimization occurs there.) Examples:

make divide-by-zero non-fatal
eval { $answer = $a / $b; }; warn $@ if $@;

optimized to same thing after first use
eval ’$answer = $a / $b’; warn $@ if $@;

a compile-time error
eval { $answer = };

a run-time error
eval ’$answer =’;# sets $@

exec(LIST)

exec LISTIf there is more than one argument in LIST, or if LIST is an array with more than one value, calls
execvp() with the arguments in LIST. If there is only one scalar argument, the argument is
checked for shell metacharacters. If there are any, the entire argument is passed to ‘‘/bin/sh −c’’
for parsing. If there are none, the argument is split into words and passed directly to execvp(),
which is more efficient. Note: exec (and system) do not flush your output buffer, so you may
need to set $ to avoid lost output. Examples:

exec ´/bin/echo´, ´Your arguments are: ´, @ARGV;
exec "sort $outfile uniq";

The PERL Programming Language SMM:19-23

If you don’t really want to execute the first argument, but want to lie to the program you are
executing about its own name, you can specify the program you actually want to run by assigning
that to a variable and putting the name of the variable in front of the LIST without a comma.
(This always forces interpretation of the LIST as a multi-valued list, even if there is only a single
scalar in the list.) Example:

$shell = ’/bin/csh’;
exec $shell ’-sh’;# pretend it’s a login shell

exit(EXPR)

exit EXPREvaluates EXPR and exits immediately with that value. Example:

$ans = <STDIN>;
exit 0 if $ans =˜ / ˆ[Xx] / ;

See alsodie. If EXPR is omitted, exits with 0 status.

exp(EXPR)

exp EXPRReturnse to the power of EXPR. If EXPR is omitted, gives exp($_).

fcntl(FILEHANDLE,FUNCTION,SCALAR)
Implements the fcntl(2) function. You’ll probably have to say

require "fcntl.ph";# probably /usr/local/lib/perl/fcntl.ph

first to get the correct function definitions. If fcntl.ph doesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as <sys/fcntl.h>.
(There is a perl script called h2ph that comes with the perl kit which may help you in this.) Argu-
ment processing and value return works just like ioctl below. Note that fcntl will produce a fatal
error if used on a machine that doesn’t implement fcntl(2).

fileno(FILEHANDLE)

fileno FILEHANDLE
Returns the file descriptor for a filehandle. Useful for constructing bitmaps for select(). If FILE-
HANDLE is an expression, the value is taken as the name of the filehandle.

flock(FILEHANDLE,OPERATION)
Calls flock(2) on FILEHANDLE. See manual page for flock(2) for definition of OPERATION.
Returns true for success, false on failure. Will produce a fatal error if used on a machine that
doesn’t implement flock(2). Here’s a mailbox appender for BSD systems.

SMM:19-24 The PERL Programming Language

$LOCK_SH = 1;
$LOCK_EX = 2;
$LOCK_NB = 4;
$LOCK_UN = 8;

sub lock {
flock(MBOX,$LOCK_EX);
and, in case someone appended
while we were waiting...
seek(MBOX, 0, 2);

}

sub unlock {
flock(MBOX,$LOCK_UN);

}

open(MBOX, ">>/usr/spool/mail/$ENV{’USER’}")
 die "Can’t open mailbox: $!";

do lock();
print MBOX $msg,"\n\n";
do unlock();

fork Does a fork() call. Returns the child pid to the parent process and 0 to the child process. Note:
unflushed buffers remain unflushed in both processes, which means you may need to set $ to
avoid duplicate output.

getc(FILEHANDLE)

getc FILEHANDLE

getc Returns the next character from the input file attached to FILEHANDLE, or a null string at EOF.
If FILEHANDLE is omitted, reads from STDIN.

getlogin Returns the current login from /etc/utmp, if any. If null, use getpwuid.

$login = getlogin (getpwuid($<))[0] "Somebody";

getpeername(SOCKET)
Returns the packed sockaddr address of other end of the SOCKET connection.

An internet sockaddr
$sockaddr = ’S n a4 x8’;
$hersockaddr = getpeername(S);
($family, $port, $heraddr) = unpack($sockaddr,$hersockaddr);

getpgrp(PID)

getpgrp PID
Returns the current process group for the specified PID, 0 for the current process. Will produce a
fatal error if used on a machine that doesn’t implement getpgrp(2). If EXPR is omitted, returns
process group of current process.

getppid Returns the process id of the parent process.

The PERL Programming Language SMM:19-25

getpriority(WHICH,WHO)
Returns the current priority for a process, a process group, or a user. (See getpriority(2).) Will
produce a fatal error if used on a machine that doesn’t implement getpriority(2).

getpwnam(NAME)

getgrnam(NAME)

gethostbyname(NAME)

getnetbyname(NAME)

getprotobyname(NAME)

getpwuid(UID)

getgrgid(GID)

getservbyname(NAME,PROT O)

gethostbyaddr(ADDR,ADDRTYPE)

getnetbyaddr(ADDR,ADDRTYPE)

getprotobynumber(NUMBER)

getservbyport(PORT,PROT O)

getpwent

getgrent

gethostent

getnetent

getprotoent

getservent

setpwent

setgrent

sethostent(STAY OPEN)

setnetent(STAY OPEN)

setprotoent(STAY OPEN)

setservent(STAY OPEN)

endpwent

endgrent

endhostent

endnetent

endprotoent

endserventThese routines perform the same functions as their counterparts in the system library. Within an
array context, the return values from the various get routines are as follows:

($name,$passwd,$uid,$gid,
$quota,$comment,$gcos,$dir,$shell) = getpw. . .

($name,$passwd,$gid,$members) = getgr. . .
($name,$aliases,$addrtype,$length,@addrs) = gethost. . .
($name,$aliases,$addrtype,$net) = getnet. . .
($name,$aliases,$proto) = getproto. . .
($name,$aliases,$port,$proto) = getserv. . .

(If the entry doesn’t exist you get a null list.)

Within a scalar context, you get the name, unless the function was a lookup by name, in which

SMM:19-26 The PERL Programming Language

case you get the other thing, whatever it is. (If the entry doesn’t exist you get the undefined
value.) For example:

$uid = getpwnam
$name = getpwuid
$name = getpwent
$gid = getgrnam
$name = getgrgid
$name = getgrent
etc.

The $members value returned by getgr. . . is aspace separated list of the login names of the mem-
bers of the group.

For the gethost. . . functions, if the h_errno variable is supported in C, it will be returned to you
via $? if the function call fails. The @addrs value returned by a successful call is a list of the raw
addresses returned by the corresponding system library call. In the Internet domain, each address
is four bytes long and you can unpack it by saying something like:

($a,$b,$c,$d) = unpack(’C4’,$addr[0]);

getsockname(SOCKET)
Returns the packed sockaddr address of this end of the SOCKET connection.

An internet sockaddr
$sockaddr = ’S n a4 x8’;
$mysockaddr = getsockname(S);
($family, $port, $myaddr) = unpack($sockaddr,$mysockaddr);

getsockopt(SOCKET,LEVEL,OPTNAME)
Returns the socket option requested, or undefined if there is an error.

gmtime(EXPR)

gmtime EXPR
Converts a time as returned by the time function to a 9-element array with the time analyzed for
the Greenwich timezone. Typically used as follows:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0. .11 and $wday has the range 0. .6. If EXPR is omitted, does gmtime(time).

goto LABEL
Finds the statement labeled with LABEL and resumes execution there. Currently you may only
go to statements in the main body of the program that are not nested inside a do {} construct.
This statement is not implemented very efficiently, and is here only to make thesed-to- translator
easier. I may change its semantics at any time, consistent with support for translatedsed scripts.
Use it at your own risk. Better yet, don’t use it at all.

grep(EXPR,LIST)
Evaluates EXPR for each element of LIST (locally setting $_ to each element) and returns the
array value consisting of those elements for which the expression evaluated to true. In a scalar
context, returns the number of times the expression was true.

@foo = grep(!/ˆ#/, @bar); # weed out comments

The PERL Programming Language SMM:19-27

Note that, since $_ is a reference into the array value, it can be used to modify the elements of the
array. While this is useful and supported, it can cause bizarre results if the LIST is not a named
array.

hex(EXPR)

hex EXPRReturns the decimal value of EXPR interpreted as an hex string. (To interpret strings that might
start with 0 or 0x see oct().) If EXPR is omitted, uses $_.

index(STR,SUBSTR,POSITION)

index(STR,SUBSTR)
Returns the position of the first occurrence of SUBSTR in STR at or after POSITION. If POSI-
TION is omitted, starts searching from the beginning of the string. The return value is based at 0,
or whatever you’ve set the $[variable to. If the substring is not found, returns one less than the
base, ordinarily −1.

int(EXPR)

int EXPRReturns the integer portion of EXPR. If EXPR is omitted, uses $_.

ioctl(FILEHANDLE,FUNCTION,SCALAR)
Implements the ioctl(2) function. You’ll probably have to say

require "ioctl.ph";# probably /usr/local/lib/perl/ioctl.ph

first to get the correct function definitions. If ioctl.ph doesn’t exist or doesn’t hav e the correct
definitions you’ll have to roll your own, based on your C header files such as <sys/ioctl.h>.
(There is a perl script called h2ph that comes with the perl kit which may help you in this.)
SCALAR will be read and/or written depending on the FUNCTION— a pointer to the string
value of SCALAR will be passed as the third argument of the actual ioctl call. (If SCALAR has
no string value but does have a numeric value, that value will be passed rather than a pointer to
the string value. To guarantee this to be true, add a 0 to the scalar before using it.) The pack()
and unpack() functions are useful for manipulating the values of structures used by ioctl(). The
following example sets the erase character to DEL.

require ’ioctl.ph’;
$sgttyb_t = "ccccs";# 4 chars and a short
if (ioctl(STDIN,$TIOCGETP,$sgttyb)) {
@ary = unpack($sgttyb_t,$sgttyb);
$ary[2] = 127;
$sgttyb = pack($sgttyb_t,@ary);
ioctl(STDIN,$TIOCSETP,$sgttyb)
 die "Can’t ioctl: $!";
}

The return value of ioctl (and fcntl) is as follows:

if OS returns: perl returns:
-1 undefined value
0 string "0 but true"
anything else that number

Thus perl returns true on success and false on failure, yet you can still easily determine the actual
value returned by the operating system:

($retval = ioctl(...)) ($retval = -1);
printf "System returned %d\n", $retval;

SMM:19-28 The PERL Programming Language

join(EXPR,LIST)

join(EXPR,ARRAY)
Joins the separate strings of LIST or ARRAY into a single string with fields separated by the
value of EXPR, and returns the string. Example:

$_ = join(´:´, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Seesplit.

keys(ASSOC_ARRAY)

keys ASSOC_ARRAY
Returns a normal array consisting of all the keys of the named associative array. The keys are
returned in an apparently random order, but it is the same order as either the values() or each()
function produces (given that the associative array has not been modified). Here is yet another
way to print your environment:

@keys = keys %ENV;
@values = values %ENV;
while ($#keys >= 0) {
print pop(@keys), ´=´, pop(@values), "\n";
}

or how about sorted by key:

foreach $key (sort(keys %ENV)) {
print $key, ´=´, $ENV{$key}, "\n";
}

kill(LIST)

kill LIST Sends a signal to a list of processes. The first element of the list must be the signal to send.
Returns the number of processes successfully signaled.

$cnt = kill 1, $child1, $child2;
kill 9, @goners;

If the signal is negative, kills process groups instead of processes. (On System V, a neg ativepro-
cessnumber will also kill process groups, but that’s not portable.) You may use a signal name in
quotes.

last LABEL

last Thelast command is like thebreak statement in C (as used in loops); it immediately exits the
loop in question. If the LABEL is omitted, the command refers to the innermost enclosing loop.
Thecontinueblock, if any, is not executed:

line: while (<STDIN>) {
last line if / ˆ$/;# exit when done with header
. . .
}

length(EXPR)

length EXPR
Returns the length in characters of the value of EXPR. If EXPR is omitted, returns length of $_.

The PERL Programming Language SMM:19-29

link(OLDFILE,NEWFILE)
Creates a new filename linked to the old filename. Returns 1 for success, 0 otherwise.

listen(SOCKET,QUEUESIZE)
Does the same thing that the listen system call does. Returns true if it succeeded, false otherwise.
See example in section on Interprocess Communication.

local(LIST)
Declares the listed variables to be local to the enclosing block, subroutine, eval or ‘‘do’’. All the
listed elements must be legal lvalues. This operator works by saving the current values of those
variables in LIST on a hidden stack and restoring them upon exiting the block, subroutine or eval.
This means that called subroutines can also reference the local variable, but not the global one.
The LIST may be assigned to if desired, which allows you to initialize your local variables. (If
no initializer is given for a particular variable, it is created with an undefined value.) Commonly
this is used to name the parameters to a subroutine. Examples:

sub RANGEVAL {
local($min, $max, $thunk) = @_;
local($result) = ´´;
local($i);

Presumably $thunk makes reference to $i

for ($i = $min; $i < $max; $i++) {
$result .= eval $thunk;
}

$result;
}

if ($sw eq ´-v´) {
init local array with global array
local(@ARGV) = @ARGV;
unshift(@ARGV,´echo´);
system @ARGV;

}
@ARGV restored

temporarily add to digits associative array
if ($base12) {
(NOTE: not claiming this is efficient!)
local(%digits) = (%digits,’t’,10,’e’,11);
do parse_num();
}

Note that local() is a run-time command, and so gets executed every time through a loop, using
up more stack storage each time until it’s all released at once when the loop is exited.

localtime(EXPR)

localtime EXPR
Converts a time as returned by the time function to a 9-element array with the time analyzed for
the local timezone. Typically used as follows:

SMM:19-30 The PERL Programming Language

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

All array elements are numeric, and come straight out of a struct tm. In particular this means that
$mon has the range 0. .11 and $wday has the range 0. .6. If EXPR is omitted, does local-
time(time).

log(EXPR)

log EXPRReturns logarithm (basee) of EXPR. If EXPR is omitted, returns log of $_.

lstat(FILEHANDLE)

lstat FILEHANDLE

lstat(EXPR)

lstat SCALARVARIABLE
Does the same thing as the stat() function, but stats a symbolic link instead of the file the sym-
bolic link points to. If symbolic links are unimplemented on your system, a normal stat is done.

m/PATTERN/gio

/PATTERN/gio
Searches a string for a pattern match, and returns true (1) or false (´´). If no string is specified via
the =˜ or !˜ operator, the $_ string is searched. (The string specified with =˜ need not be an
lvalue— it may be the result of an expression evaluation, but remember the =˜ binds rather
tightly.) See also the section on regular expressions.

If / is the delimiter then the initial ‘m’ is optional. With the ‘m’ you can use any pair of non-
alphanumeric characters as delimiters. This is particularly useful for matching Unix path names
that contain ‘/’. If the final delimiter is followed by the optional letter ‘i’, the matching is done in
a case-insensitive manner. PATTERN may contain references to scalar variables, which will be
interpolated (and the pattern recompiled) every time the pattern search is evaluated. (Note that $)
and $ may not be interpolated because they look like end-of-string tests.) If you want such a
pattern to be compiled only once, add an ‘‘o’’ after the trailing delimiter. This avoids expensive
run-time recompilations, and is useful when the value you are interpolating won’t change over the
life of the script. If the PATTERN evaluates to a null string, the most recent successful regular
expression is used instead.

If used in a context that requires an array value, a pattern match returns an array consisting of the
subexpressions matched by the parentheses in the pattern, i.e. ($1, $2, $3. . .). It does NOT actu-
ally set $1, $2, etc. in this case, nor does it set $+, $‘, $& or $’. If the match fails, a null array is
returned. If the match succeeds, but there were no parentheses, an array value of (1) is returned.

Examples:

open(tty, ´/dev/tty´);
<tty> =˜ / ˆy /i && do foo();# do foo if desired

if (/Version: * ([0−9.]*) /) { $version = $1; }

next if m#ˆ/usr/spool/uucp#;

poor man’s grep
$arg = shift;
while (<>) {

print if /$arg/o;# compile only once
}

if (($F1, $F2, $Etc) = ($foo =˜ /ˆ(\S+)\s+(\S+)\s*(.*)/))

This last example splits $foo into the first two words and the remainder of the line, and assigns

The PERL Programming Language SMM:19-31

those three fields to $F1, $F2 and $Etc. The conditional is true if any variables were assigned,
i.e. if the pattern matched.

The ‘‘g’’ modifier specifies global pattern matching— that is, matching as many times as possible
within the string. How it behaves depends on the context. In an array context, it returns a list of
all the substrings matched by all the parentheses in the regular expression. If there are no paren-
theses, it returns a list of all the matched strings, as if there were parentheses around the whole
pattern. In a scalar context, it iterates through the string, returning TRUE each time it matches,
and FALSE when it eventually runs out of matches. (In other words, it remembers where it left
off last time and restarts the search at that point.) It presumes that you have not modified the
string since the last match. Modifying the string between matches may result in undefined behav-
ior. (You can actually get away with in-place modifications via substr() that do not change the
length of the entire string. In general, however, you should be using s///g for such modifications.)
Examples:

array context
($one,$five,$fifteen) = (`uptime` =˜ /(\d+\.\d+)/g);

scalar context
$/ = ""; $* = 1;
while ($paragraph = <>) {

while ($paragraph =˜ /[a-z][´")]*[.!?]+[´")]*\s/g) {
$sentences++;

}
}
print "$sentences\n";

mkdir(FILENAME,MODE)
Creates the directory specified by FILENAME, with permissions specified by MODE (as modi-
fied by umask). If it succeeds it returns 1, otherwise it returns 0 and sets $! (errno).

msgctl(ID,CMD,ARG)
Calls the System V IPC function msgctl. If CMD is &IPC_STAT , then ARG must be a variable
which will hold the returned msqid_ds structure. Returns like ioctl: the undefined value for error,
"0 but true" for zero, or the actual return value otherwise.

msgget(KEY,FLAGS)
Calls the System V IPC function msgget. Returns the message queue id, or the undefined value if
there is an error.

msgsnd(ID,MSG,FLAGS)
Calls the System V IPC function msgsnd to send the message MSG to the message queue ID.
MSG must begin with the long integer message type, which may be created with pack("L",
$type). Returns true if successful, or false if there is an error.

msgrcv(ID,VAR,SIZE,TYPE,FLAGS)
Calls the System V IPC function msgrcv to receive a message from message queue ID into vari-
able VAR with a maximum message size of SIZE. Note that if a message is received, the mes-
sage type will be the first thing in VAR, and the maximum length of VAR is SIZE plus the size of
the message type. Returns true if successful, or false if there is an error.

SMM:19-32 The PERL Programming Language

next LABEL

next Thenext command is like thecontinuestatement in C; it starts the next iteration of the loop:

line: while (<STDIN>) {
next line if / ˆ#/;# discard comments
. . .
}

Note that if there were acontinue block on the above, it would get executed even on discarded
lines. If the LABEL is omitted, the command refers to the innermost enclosing loop.

oct(EXPR)

oct EXPRReturns the decimal value of EXPR interpreted as an octal string. (If EXPR happens to start off
with 0x, interprets it as a hex string instead.) The following will handle decimal, octal and hex in
the standard notation:

$val = oct($val) if $val =˜ /ˆ0/;

If EXPR is omitted, uses $_.

open(FILEHANDLE,EXPR)

open(FILEHANDLE)

open FILEHANDLE
Opens the file whose filename is given by EXPR, and associates it with FILEHANDLE. If FILE-
HANDLE is an expression, its value is used as the name of the real filehandle wanted. If EXPR
is omitted, the scalar variable of the same name as the FILEHANDLE contains the filename. If
the filename begins with ‘‘<’’ or nothing, the file is opened for input. If the filename begins with
‘‘>’’, the file is opened for output. If the filename begins with ‘‘>>’’, the file is opened for
appending. (You can put a ´+´ in front of the ´>´ or ´<´ to indicate that you want both read and
write access to the file.) If the filename begins with ‘‘’’, the filename is interpreted as a com-
mand to which output is to be piped, and if the filename ends with a ‘‘’’, the filename is inter-
preted as command which pipes input to us. (You may not have a command that pipes both in
and out.) Opening ´−´ opensSTDIN and opening ´>−´ opensSTDOUT. Open returns non-zero
upon success, the undefined value otherwise. If the open involved a pipe, the return value hap-
pens to be the pid of the subprocess. Examples:

$article = 100;
open article die "Can’t find article $article: $!\n";
while (<article>) { . . .

open(LOG, ´>>/usr/spool/news/twitlog´);# (log is reserved)

open(article, "caesar <$article");# decrypt article

open(extract, "sort >/tmp/Tmp$$");# $$ is our process#

process argument list of files along with any includes

foreach $file (@ARGV) {
do process($file, ´fh00´);# no pun intended
}

sub process {
local($filename, $input) = @_;
$input++;# this is a string increment

The PERL Programming Language SMM:19-33

unless (open($input, $filename)) {
print STDERR "Can’t open $filename: $!\n";
return;
}
while (<$input>) {# note the use of indirection
if (/ˆ#include "(.*)"/) {
do process($1, $input);
next;
}
. . .# whatever
}
}

You may also, in the Bourne shell tradition, specify an EXPR beginning with ‘‘>&’’, in which
case the rest of the string is interpreted as the name of a filehandle (or file descriptor, if numeric)
which is to be duped and opened. You may use & after >, >>, <, +>, +>> and +<. The mode you
specify should match the mode of the original filehandle. Here is a script that saves, redirects,
and restoresSTDOUTandSTDERR:

#!/usr/bin/perl
open(SAVEOUT, ">&STDOUT");
open(SAVEERR, ">&STDERR");

open(STDOUT, ">foo.out") die "Can’t redirect stdout";
open(STDERR, ">&STDOUT") die "Can’t dup stdout";

select(STDERR); $ = 1;# make unbuffered
select(STDOUT); $ = 1;# make unbuffered

print STDOUT "stdout 1\n";# this works for
print STDERR "stderr 1\n"; # subprocesses too

close(STDOUT);
close(STDERR);

open(STDOUT, ">&SAVEOUT");
open(STDERR, ">&SAVEERR");

print STDOUT "stdout 2\n";
print STDERR "stderr 2\n";

If you open a pipe on the command ‘‘−’’, i.e. either ‘‘−’’ or ‘‘− ’’, then there is an implicit fork
done, and the return value of open is the pid of the child within the parent process, and 0 within
the child process. (Use defined($pid) to determine if the open was successful.) The filehandle
behaves normally for the parent, but i/o to that filehandle is piped from/to theSTDOUT/ of the
child process. In the child process the filehandle isn’t opened— i/o happens from/to the new
STDOUTor STDIN. Typically this is used like the normal piped open when you want to exercise
more control over just how the pipe command gets executed, such as when you are running
setuid, and don’t want to have to scan shell commands for metacharacters. The following pairs
are more or less equivalent:

SMM:19-34 The PERL Programming Language

open(FOO, "tr ´[a−z]´ ´[A−Z]´");
open(FOO, "−") exec ´tr´, ´[a−z]´, ´[A−Z]´;

open(FOO, "cat −n ’$file’");
open(FOO, "−") exec ´cat´, ´−n´, $file;

Explicitly closing any piped filehandle causes the parent process to wait for the child to finish,
and returns the status value in $?. Note: on any operation which may do a fork, unflushed buffers
remain unflushed in both processes, which means you may need to set $ to avoid duplicate out-
put.

The filename that is passed to open will have leading and trailing whitespace deleted. In order to
open a file with arbitrary weird characters in it, it’s necessary to protect any leading and trailing
whitespace thusly:

$file =˜ s#ˆ(\s)#./$1#;
open(FOO, "< $file\0");

opendir(DIRHANDLE,EXPR)
Opens a directory named EXPR for processing by readdir(), telldir(), seekdir(), rewinddir() and
closedir(). Returns true if successful. DIRHANDLEs have their own namespace separate from
FILEHANDLEs.

ord(EXPR)

ord EXPRReturns the numeric ascii value of the first character of EXPR. If EXPR is omitted, uses $_.

pack(TEMPLATE,LIST)
Takes an array or list of values and packs it into a binary structure, returning the string containing
the structure. The TEMPLATE is a sequence of characters that give the order and type of values,
as follows:

AAn ascii string, will be space padded.
aAn ascii string, will be null padded.
cA signed char value.
CAn unsigned char value.
sA signed short value.
SAn unsigned short value.
iA signed integer value.
IAn unsigned integer value.
lA signed long value.
LAn unsigned long value.
nA short in ‘‘network’’ order.
NA long in ‘‘network’’ order.
fA single-precision float in the native format.
dA double-precision float in the native format.
pA pointer to a string.
vA short in ‘‘VAX’’ (little-endian) order.
VA long in ‘‘VAX’’ (little-endian) order.
xA null byte.
XBack up a byte.
@Null fill to absolute position.
uA uuencoded string.
bA bit string (ascending bit order, like vec()).
BA bit string (descending bit order).
hA hex string (low nybble first).
HA hex string (high nybble first).

The PERL Programming Language SMM:19-35

Each letter may optionally be followed by a number which gives a repeat count. With all types
except "a", "A", "b", "B", "h" and "H", the pack function will gobble up that many values from
the LIST. A * for the repeat count means to use however many items are left. The "a" and "A"
types gobble just one value, but pack it as a string of length count, padding with nulls or spaces as
necessary. (When unpacking, "A" strips trailing spaces and nulls, but "a" does not.) Likewise,
the "b" and "B" fields pack a string that many bits long. The "h" and "H" fields pack a string that
many nybbles long. Real numbers (floats and doubles) are in the native machine format only; due
to the multiplicity of floating formats around, and the lack of a standard ‘‘network’’ representa-
tion, no facility for interchange has been made. This means that packed floating point data writ-
ten on one machine may not be readable on another - even if both use IEEE floating point arith-
metic (as the endian-ness of the memory representation is not part of the IEEE spec). Note that
perl uses doubles internally for all numeric calculation, and converting from double -> float ->
double will lose precision (i.e. unpack("f", pack("f", $foo)) will not in general equal $foo).
Examples:

$foo = pack("cccc",65,66,67,68);
foo eq "ABCD"
$foo = pack("c4",65,66,67,68);
same thing

$foo = pack("ccxxcc",65,66,67,68);
foo eq "AB\0\0CD"

$foo = pack("s2",1,2);
"\1\0\2\0" on little-endian
"\0\1\0\2" on big-endian

$foo = pack("a4","abcd","x","y","z");
"abcd"

$foo = pack("aaaa","abcd","x","y","z");
"axyz"

$foo = pack("a14","abcdefg");
"abcdefg\0\0\0\0\0\0\0"

$foo = pack("i9pl", gmtime);
a real struct tm (on my system anyway)

sub bintodec {
unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

}
The same template may generally also be used in the unpack function.

pipe(READHANDLE,WRITEHANDLE)
Opens a pair of connected pipes like the corresponding system call. Note that if you set up a loop
of piped processes, deadlock can occur unless you are very careful. In addition, note that perl’s
pipes use stdio buffering, so you may need to set $ to flush your WRITEHANDLE after each
command, depending on the application. [Requires version 3.0 patchlevel 9.]

pop(ARRAY)

SMM:19-36 The PERL Programming Language

pop ARRAY
Pops and returns the last value of the array, shortening the array by 1. Has the same effect as

$tmp = $ARRAY[$#ARRAY− −];

If there are no elements in the array, returns the undefined value.

print(FILEHANDLE LIST)

print(LIST)

print FILEHANDLE LIST

print LIST

print Prints a string or a comma-separated list of strings. Returns non-zero if successful. FILEHAN-
DLE may be a scalar variable name, in which case the variable contains the name of the filehan-
dle, thus introducing one level of indirection. (NOTE: If FILEHANDLE is a variable and the
next token is a term, it may be misinterpreted as an operator unless you interpose a + or put
parens around the arguments.) If FILEHANDLE is omitted, prints by default to standard output
(or to the last selected output channel— see select()). If LIST is also omitted, prints $_ toSTD-
OUT. To set the default output channel to something other thanSTDOUT use the select opera-
tion. Note that, because print takes a LIST, anything in the LIST is evaluated in an array context,
and any subroutine that you call will have one or more of its expressions evaluated in an array
context. Also be careful not to follow the print keyword with a left parenthesis unless you want
the corresponding right parenthesis to terminate the arguments to the print— interpose a + or put
parens around all the arguments.

printf(FILEHANDLE LIST)

printf(LIST)

printf FILEHANDLE LIST

printf LIST
Equivalent to a ‘‘print FILEHANDLE sprintf(LIST)’’.

push(ARRAY,LIST)
Treats ARRAY (@ is optional) as a stack, and pushes the values of LIST onto the end of ARRAY.
The length of ARRAY increases by the length of LIST. Has the same effect as

for $value (LIST) {
$ARRAY[++$#ARRAY] = $value;

}

but is more efficient.

q/STRING/

qq/STRING/

qx/STRING/
These are not really functions, but simply syntactic sugar to let you avoid putting too many back-
slashes into quoted strings. The q operator is a generalized single quote, and the qq operator a
generalized double quote. The qx operator is a generalized backquote. Any non-alphanumeric
delimiter can be used in place of /, including newline. If the delimiter is an opening bracket or
parenthesis, the final delimiter will be the corresponding closing bracket or parenthesis. (Embed-
ded occurrences of the closing bracket need to be backslashed as usual.) Examples:

The PERL Programming Language SMM:19-37

$foo = q!I said, "You said, ´She said it.´"!;
$bar = q(´This is it.´);
$today = qx{ date };
$_ .= qq

*** The previous line contains the naughty word "$&".\n
if /(ibmappleawk)/; # :-)

rand(EXPR)

rand EXPR

rand Returns a random fractional number between 0 and the value of EXPR. (EXPR should be posi-
tive.) If EXPR is omitted, returns a value between 0 and 1. See also srand().

read(FILEHANDLE,SCALAR,LENGTH,OFFSET)

read(FILEHANDLE,SCALAR,LENGTH)
Attempts to read LENGTH bytes of data into variable SCALAR from the specified FILEHAN-
DLE. Returns the number of bytes actually read, or undef if there was an error. SCALAR will
be grown or shrunk to the length actually read. An OFFSET may be specified to place the read
data at some other place than the beginning of the string. This call is actually implemented in
terms of stdio’s fread call. To get a true read system call, see sysread.

readdir(DIRHANDLE)

readdir DIRHANDLE
Returns the next directory entry for a directory opened by opendir(). If used in an array context,
returns all the rest of the entries in the directory. If there are no more entries, returns an unde-
fined value in a scalar context or a null list in an array context.

readlink(EXPR)

readlink EXPR
Returns the value of a symbolic link, if symbolic links are implemented. If not, gives a fatal
error. If there is some system error, returns the undefined value and sets $! (errno). If EXPR is
omitted, uses $_.

recv(SOCKET,SCALAR,LEN,FLAGS)
Receives a message on a socket. Attempts to receive LENGTH bytes of data into variable
SCALAR from the specified SOCKET filehandle. Returns the address of the sender, or the unde-
fined value if there’s an error. SCALAR will be grown or shrunk to the length actually read.
Takes the same flags as the system call of the same name.

redo LABEL

redo Theredo command restarts the loop block without evaluating the conditional again. Thecon-
tinue block, if any, is not executed. If the LABEL is omitted, the command refers to the inner-
most enclosing loop. This command is normally used by programs that want to lie to themselves
about what was just input:

SMM:19-38 The PERL Programming Language

a simpleminded Pascal comment stripper
(warning: assumes no { or } in strings)
line: while (<STDIN>) {
while (s ({.*}.*){.*} $1) {}
s{.*} ;
if (s{.*) {
$front = $_;
while (<STDIN>) {
if (/ }/) {# end of comment?
sˆ$front{;
redo line;
}
}
}
print;
}

rename(OLDNAME,NEWNAME)
Changes the name of a file. Returns 1 for success, 0 otherwise. Will not work across filesystem
boundaries.

require(EXPR)

require EXPR

require Includes the library file specified by EXPR, or by $_ if EXPR is not supplied. Has semantics
similar to the following subroutine:

sub require {
local($filename) = @_;
return 1 if $INC{$filename};
local($realfilename,$result);
ITER: {

foreach $prefix (@INC) {
$realfilename = "$prefix/$filename";
if (-f $realfilename) {

$result = do $realfilename;
last ITER;

}
}
die "Can’t find $filename in \@INC";

}
die $@ if $@;
die "$filename did not return true value" unless $result;
$INC{$filename} = $realfilename;
$result;

}

Note that the file will not be included twice under the same specified name. The file must return
true as the last statement to indicate successful execution of any initialization code, so it’s cus-
tomary to end such a file with ‘‘1;’’ unless you’re sure it’ll return true otherwise.

The PERL Programming Language SMM:19-39

reset(EXPR)

reset EXPR

reset Generally used in acontinueblock at the end of a loop to clear variables and reset ?? searches so
that they work again. The expression is interpreted as a list of single characters (hyphens allowed
for ranges). All variables and arrays beginning with one of those letters are reset to their pristine
state. If the expression is omitted, one-match searches (?pattern?) are reset to match again. Only
resets variables or searches in the current package. Always returns 1. Examples:

reset ´X´; # reset all X variables
reset ´a−z´; # reset lower case variables
reset; # just reset ?? searches

Note: resetting ‘‘A−Z’’ is not recommended since you’ll wipe out your ARGV and ENV arrays.

The use of reset on dbm associative arrays does not change the dbm file. (It does, however, flush
any entries cached by perl, which may be useful if you are sharing the dbm file. Then again,
maybe not.)

return LIST
Returns from a subroutine with the value specified. (Note that a subroutine can automatically
return the value of the last expression evaluated. That’s the preferred method— use of an explicit
return is a bit slower.)

reverse(LIST)

reverse LIST
In an array context, returns an array value consisting of the elements of LIST in the opposite
order. In a scalar context, returns a string value consisting of the bytes of the first element of
LIST in the opposite order.

rewinddir(DIRHANDLE)

rewinddir DIRHANDLE
Sets the current position to the beginning of the directory for the readdir() routine on DIRHAN-
DLE.

rindex(STR,SUBSTR,POSITION)

rindex(STR,SUBSTR)
Works just like index except that it returns the position of the LAST occurrence of SUBSTR in
STR. If POSITION is specified, returns the last occurrence at or before that position.

rmdir(FILENAME)

rmdir FILENAME
Deletes the directory specified by FILENAME if it is empty. If it succeeds it returns 1, otherwise
it returns 0 and sets $! (errno). If FILENAME is omitted, uses $_.

s/PATTERN/REPLACEMENT/gieo
Searches a string for a pattern, and if found, replaces that pattern with the replacement text and
returns the number of substitutions made. Otherwise it returns false (0). The ‘‘g’’ is optional,
and if present, indicates that all occurrences of the pattern are to be replaced. The ‘‘i’’ is also
optional, and if present, indicates that matching is to be done in a case-insensitive manner. The
‘‘e’’ is likewise optional, and if present, indicates that the replacement string is to be evaluated as
an expression rather than just as a double-quoted string. Any non-alphanumeric delimiter may
replace the slashes; if single quotes are used, no interpretation is done on the replacement string
(the e modifier overrides this, however); if backquotes are used, the replacement string is a com-
mand to execute whose output will be used as the actual replacement text. If the PATTERN is
delimited by bracketing quotes, the REPLACEMENT has its own pair of quotes, which may or
may not be bracketing quotes, e.g. s(foo)(bar) or s<foo>/bar/. If no string is specified via the =˜
or !˜ operator, the $_ string is searched and modified. (The string specified with =˜ must be a

SMM:19-40 The PERL Programming Language

scalar variable, an array element, or an assignment to one of those, i.e. an lvalue.) If the pattern
contains a $ that looks like a variable rather than an end-of-string test, the variable will be inter-
polated into the pattern at run-time. If you only want the pattern compiled once the first time the
variable is interpolated, add an ‘‘o’’ at the end. If the PATTERN evaluates to a null string, the
most recent successful regular expression is used instead. See also the section on regular expres-
sions. Examples:

s/ \ bgreen\ b/mauve/g;# don’t change wintergreen

$path =˜ s /usr/bin /usr/local/bin;

s/Login: $foo/Login: $bar/; # run-time pattern

($foo = $bar) =˜ s/bar/foo/;

$_ = ´abc123xyz´;
s/\d+/$&*2/e;# yields ‘abc246xyz’
s/\d+/sprintf("%5d",$&)/e;# yields ‘abc 246xyz’
s/\w/$& x 2/eg;# yields ‘aabbcc 224466xxyyzz’

s/ ([ˆ]*) * ([ˆ] *) / $2 $1/;# reverse 1st two fields

(Note the use of $ instead of \ in the last example. See section on regular expressions.)

scalar(EXPR)
Forces EXPR to be interpreted in a scalar context and returns the value of EXPR.

seek(FILEHANDLE,POSITION,WHENCE)
Randomly positions the file pointer for FILEHANDLE, just like the fseek() call of stdio. FILE-
HANDLE may be an expression whose value gives the name of the filehandle. Returns 1 upon
success, 0 otherwise.

seekdir(DIRHANDLE,POS)
Sets the current position for the readdir() routine on DIRHANDLE. POS must be a value
returned by telldir(). Has the same caveats about possible directory compaction as the corre-
sponding system library routine.

select(FILEHANDLE)

select Returns the currently selected filehandle. Sets the current default filehandle for output, if FILE-
HANDLE is supplied. This has two effects: first, awrite or a print without a filehandle will
default to this FILEHANDLE. Second, references to variables related to output will refer to this
output channel. For example, if you have to set the top of form format for more than one output
channel, you might do the following:

select(REPORT1);
$ˆ = ´report1_top´;
select(REPORT2);
$ˆ = ´report2_top´;

FILEHANDLE may be an expression whose value gives the name of the actual filehandle. Thus:

$oldfh = select(STDERR); $ = 1; select($oldfh);

select(RBITS,WBITS,EBITS,TIMEOUT)
This calls the select system call with the bitmasks specified, which can be constructed using
fileno() and vec(), along these lines:

The PERL Programming Language SMM:19-41

$rin = $win = $ein = ’’;
vec($rin,fileno(STDIN),1) = 1;
vec($win,fileno(STDOUT),1) = 1;
$ein = $rin $win;

If you want to select on many filehandles you might wish to write a subroutine:

sub fhbits {
local(@fhlist) = split(’ ’,$_[0]);
local($bits);
for (@fhlist) {

vec($bits,fileno($_),1) = 1;
}
$bits;

}
$rin = &fhbits(’STDIN TTY SOCK’);

The usual idiom is:

($nfound,$timeleft) =
select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

or to block until something becomes ready:

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

Any of the bitmasks can also be undef. The timeout, if specified, is in seconds, which may be
fractional. NOTE: not all implementations are capable of returning the $timeleft. If not, they
always return $timeleft equal to the supplied $timeout.

semctl(ID,SEMNUM,CMD,ARG)
Calls the System V IPC function semctl. If CMD is &IPC_STAT or &GETALL, then ARG must
be a variable which will hold the returned semid_ds structure or semaphore value array. Returns
like ioctl: the undefined value for error, "0 but true" for zero, or the actual return value otherwise.

semget(KEY,NSEMS,SIZE,FLAGS)
Calls the System V IPC function semget. Returns the semaphore id, or the undefined value if
there is an error.

semop(KEY,OPSTRING)
Calls the System V IPC function semop to perform semaphore operations such as signaling and
waiting. OPSTRING must be a packed array of semop structures. Each semop structure can be
generated with ’pack("sss", $semnum, $semop, $semflag)’. The number of semaphore operations
is implied by the length of OPSTRING. Returns true if successful, or false if there is an error.
As an example, the following code waits on semaphore $semnum of semaphore id $semid:

$semop = pack("sss", $semnum, -1, 0);
die "Semaphore trouble: $!\n" unless semop($semid, $semop);

To signal the semaphore, replace "-1" with "1".

send(SOCKET,MSG,FLAGS,TO)

send(SOCKET,MSG,FLAGS)
Sends a message on a socket. Takes the same flags as the system call of the same name. On
unconnected sockets you must specify a destination to send TO. Returns the number of charac-
ters sent, or the undefined value if there is an error.

SMM:19-42 The PERL Programming Language

setpgrp(PID,PGRP)
Sets the current process group for the specified PID, 0 for the current process. Will produce a
fatal error if used on a machine that doesn’t implement setpgrp(2).

setpriority(WHICH,WHO,PRIORITY)
Sets the current priority for a process, a process group, or a user. (See setpriority(2).) Will pro-
duce a fatal error if used on a machine that doesn’t implement setpriority(2).

setsockopt(SOCKET,LEVEL,OPTNAME,OPTVAL)
Sets the socket option requested. Returns undefined if there is an error. OPTVAL may be speci-
fied as undef if you don’t want to pass an argument.

shift(ARRAY)

shift ARRAY

shift Shifts the first value of the array off and returns it, shortening the array by 1 and moving every-
thing down. If there are no elements in the array, returns the undefined value. If ARRAY is omit-
ted, shifts the @ARGV array in the main program, and the @_ array in subroutines. (This is
determined lexically.) See also unshift(), push() and pop(). Shift() and unshift() do the same
thing to the left end of an array that push() and pop() do to the right end.

shmctl(ID,CMD,ARG)
Calls the System V IPC function shmctl. If CMD is &IPC_STAT , then ARG must be a variable
which will hold the returned shmid_ds structure. Returns like ioctl: the undefined value for error,
"0 but true" for zero, or the actual return value otherwise.

shmget(KEY,SIZE,FLAGS)
Calls the System V IPC function shmget. Returns the shared memory segment id, or the unde-
fined value if there is an error.

shmread(ID,VAR,POS,SIZE)

shmwrite(ID,STRING,POS,SIZE)
Reads or writes the System V shared memory segment ID starting at position POS for size SIZE
by attaching to it, copying in/out, and detaching from it. When reading, VAR must be a variable
which will hold the data read. When writing, if STRING is too long, only SIZE bytes are used; if
STRING is too short, nulls are written to fill out SIZE bytes. Return true if successful, or false if
there is an error.

shutdown(SOCKET,HOW)
Shuts down a socket connection in the manner indicated by HOW, which has the same interpreta-
tion as in the system call of the same name.

sin(EXPR)

sin EXPRReturns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of $_.

sleep(EXPR)

sleep EXPR

sleep Causes the script to sleep for EXPR seconds, or forever if no EXPR. May be interrupted by send-
ing the process a SIGALRM. Returns the number of seconds actually slept. You probably can-
not mix alarm() and sleep() calls, since sleep() is often implemented using alarm().

socket(SOCKET,DOMAIN,TYPE,PROT OCOL)
Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN, TYPE
and PROT OCOL are specified the same as for the system call of the same name. You may need
to run h2ph on sys/socket.h to get the proper values handy in a perl library file. Return true if
successful. See the example in the section on Interprocess Communication.

socketpair(SOCKET1,SOCKET2,DOMAIN,TYPE,PROT OCOL)
Creates an unnamed pair of sockets in the specified domain, of the specified type. DOMAIN,
TYPE and PROT OCOL are specified the same as for the system call of the same name. If unim-
plemented, yields a fatal error. Return true if successful.

The PERL Programming Language SMM:19-43

sort(SUBROUTINE LIST)

sort(LIST)

sort SUBROUTINE LIST

sort BLOCK LIST

sort LIST Sorts the LIST and returns the sorted array value. Nonexistent values of arrays are stripped out.
If SUBROUTINE or BLOCK is omitted, sorts in standard string comparison order. If SUBROU-
TINE is specified, gives the name of a subroutine that returns an integer less than, equal to, or
greater than 0, depending on how the elements of the array are to be ordered. (The <=> and cmp
operators are extremely useful in such routines.) SUBROUTINE may be a scalar variable name,
in which case the value provides the name of the subroutine to use. In place of a SUBROUTINE
name, you can provide a BLOCK as an anonymous, in-line sort subroutine.

In the interests of efficiency the normal calling code for subroutines is bypassed, with the follow-
ing effects: the subroutine may not be a recursive subroutine, and the two elements to be com-
pared are passed into the subroutine not via @_ but as $a and $b (see example below). They are
passed by reference so don’t modify $a and $b.

Examples:

sort lexically
@articles = sort @files;

same thing, but with explicit sort routine
@articles = sort {$a cmp $b} @files;

same thing in reversed order
@articles = sort {$b cmp $a} @files;

sort numerically ascending
@articles = sort {$a <=> $b} @files;

sort numerically descending
@articles = sort {$b <=> $a} @files;

sort using explicit subroutine name
sub byage {

$age{$a} <=> $age{$b};# presuming integers
}
@sortedclass = sort byage @class;

sub reverse { $b cmp $a; }
@harry = (´dog´,´cat´,´x´,´Cain´,´Abel´);
@george = (´gone´,´chased´,´yz´,´Punished´,´Axed´);
print sort @harry;
prints AbelCaincatdogx
print sort reverse @harry;
prints xdogcatCainAbel
print sort @george, ´to´, @harry;
prints AbelAxedCainPunishedcatchaseddoggonetoxyz

SMM:19-44 The PERL Programming Language

splice(ARRAY,OFFSET,LENGTH,LIST)

splice(ARRAY,OFFSET,LENGTH)

splice(ARRAY,OFFSET)
Removes the elements designated by OFFSET and LENGTH from an array, and replaces them
with the elements of LIST, if any. Returns the elements removed from the array. The array grows
or shrinks as necessary. If LENGTH is omitted, removes everything from OFFSET onward. The
following equivalencies hold (assuming $[== 0):

push(@a,$x,$y) splice(@a,$#a+1,0,$x,$y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)
unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
$a[$x] = $y splice(@a,$x,1,$y);

Example, assuming array lengths are passed before arrays:

sub aeq {# compare two array values
local(@a) = splice(@_,0,shift);
local(@b) = splice(@_,0,shift);
return 0 unless @a == @b;# same len?
while (@a) {

return 0 if pop(@a) ne pop(@b);
}
return 1;
}
if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }

split(/PATTERN/,EXPR,LIMIT)

split(/PATTERN/,EXPR)

split(/PATTERN/)

split Splits a string into an array of strings, and returns it. (If not in an array context, returns the num-
ber of fields found and splits into the @_ array. (In an array context, you can force the split into
@_ by using ?? as the pattern delimiters, but it still returns the array value.)) If EXPR is omitted,
splits the $_ string. If PATTERN is also omitted, splits on whitespace (/[\t\n]+/). Anything
matching PATTERN is taken to be a delimiter separating the fields. (Note that the delimiter may
be longer than one character.) If LIMIT is specified, splits into no more than that many fields
(though it may split into fewer). If LIMIT is unspecified, trailing null fields are stripped (which
potential users of pop() would do well to remember). A pattern matching the null string (not to
be confused with a null pattern //, which is just one member of the set of patterns matching a null
string) will split the value of EXPR into separate characters at each point it matches that way. For
example:

print join(´:´, split(/ */, ´hi there´));

produces the output ‘h:i:t:h:e:r:e’.

The LIMIT parameter can be used to partially split a line

($login, $passwd, $remainder) = split(/ : / , $_, 3);

(When assigning to a list, if LIMIT is omitted, perl supplies a LIMIT one larger than the number
of variables in the list, to avoid unnecessary work. For the list above LIMIT would have been 4
by default. In time critical applications it behooves you not to split into more fields than you

The PERL Programming Language SMM:19-45

really need.)

If the PATTERN contains parentheses, additional array elements are created from each matching
substring in the delimiter.

split(/([,-])/,"1-10,20");

produces the array value

(1,’-’,10,’,’,20)

The pattern /PATTERN/ may be replaced with an expression to specify patterns that vary at run-
time. (To do runtime compilation only once, use /$variable/o.) As a special case, specifying a
space (´ ´) will split on white space just as split with no arguments does, but leading white space
does NOT produce a null first field. Thus, split(´ ´) can be used to emulateawk’s default behav-
ior, whereas split(/ /) will give you as many null initial fields as there are leading spaces.

Example:

open(passwd, ´/etc/passwd´);
while (<passwd>) {
($login, $passwd, $uid, $gid, $gcos, $home, $shell) = split(/ : /);
. . .
}

(Note that $shell above will still have a newline on it. See chop().) See alsojoin.

sprintf(FORMAT,LIST)
Returns a string formatted by the usual printf conventions. The * character is not supported.

sqrt(EXPR)

sqrt EXPRReturn the square root of EXPR. If EXPR is omitted, returns square root of $_.

srand(EXPR)

srand EXPR
Sets the random number seed for therand operator. If EXPR is omitted, does srand(time).

stat(FILEHANDLE)

stat FILEHANDLE

stat(EXPR)

stat SCALARVARIABLE
Returns a 13-element array giving the statistics for a file, either the file opened via FILEHAN-
DLE, or named by EXPR. Returns a null list if the stat fails. Typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
$atime,$mtime,$ctime,$blksize,$blocks)

= stat($filename);

If stat is passed the special filehandle consisting of an underline, no stat is done, but the current
contents of the stat structure from the last stat or filetest are returned. Example:

if (-x $file && (($d) = stat(_)) && $d < 0) {
print "$file is executable NFS file\n";
}

(This only works on machines for which the device number is negative under NFS.)

SMM:19-46 The PERL Programming Language

study(SCALAR)

study SCALAR

study Takes extra time to study SCALAR ($_ if unspecified) in anticipation of doing many pattern
matches on the string before it is next modified. This may or may not save time, depending on
the nature and number of patterns you are searching on, and on the distribution of character fre-
quencies in the string to be searched— you probably want to compare runtimes with and without
it to see which runs faster. Those loops which scan for many short constant strings (including the
constant parts of more complex patterns) will benefit most. You may have only one study active
at a time— if you study a different scalar the first is ‘‘unstudied’’. (The way study works is this: a
linked list of every character in the string to be searched is made, so we know, for example, where
all the ‘k’ characters are. From each search string, the rarest character is selected, based on some
static frequency tables constructed from some C programs and English text. Only those places
that contain this ‘‘rarest’’ character are examined.)

For example, here is a loop which inserts index producing entries before any line containing a
certain pattern:

while (<>) {
study;
print ".IX foo\n" if /\bfoo\b/;
print ".IX bar\n" if /\bbar\b/;
print ".IX blurfl\n" if /\bblurfl\b/;
. . .
print;
}

In searching for /\bfoo\b/, only those locations in $_ that contain ‘f’ will be looked at, because ‘f’
is rarer than ‘o’. In general, this is a big win except in pathological cases. The only question is
whether it saves you more time than it took to build the linked list in the first place.

Note that if you have to look for strings that you don’t know till runtime, you can build an entire
loop as a string and eval that to avoid recompiling all your patterns all the time. Together with
undefining $/ to input entire files as one record, this can be very fast, often faster than specialized
programs like fgrep. The following scans a list of files (@files) for a list of words (@words), and
prints out the names of those files that contain a match:

$search = ´while (<>) { study;´;
foreach $word (@words) {

$search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
}
$search .= "}";
@ARGV = @files;
undef $/;
eval $search;# this screams
$/ = "\n";# put back to normal input delim
foreach $file (sort keys(%seen)) {

print $file, "\n";
}

substr(EXPR,OFFSET,LEN)

substr(EXPR,OFFSET)
Extracts a substring out of EXPR and returns it. First character is at offset 0, or whatever you’ve
set $[to. If OFFSET is negative, starts that far from the end of the string. If LEN is omitted,
returns everything to the end of the string. You can use the substr() function as an lvalue, in

The PERL Programming Language SMM:19-47

which case EXPR must be an lvalue. If you assign something shorter than LEN, the string will
shrink, and if you assign something longer than LEN, the string will grow to accommodate it. To
keep the string the same length you may need to pad or chop your value using sprintf().

symlink(OLDFILE,NEWFILE)
Creates a new filename symbolically linked to the old filename. Returns 1 for success, 0 other-
wise. On systems that don’t support symbolic links, produces a fatal error at run time. To check
for that, use eval:

$symlink_exists = (eval ´symlink("","");´, $@ eq ´´);

syscall(LIST)

syscall LIST
Calls the system call specified as the first element of the list, passing the remaining elements as
arguments to the system call. If unimplemented, produces a fatal error. The arguments are inter-
preted as follows: if a given argument is numeric, the argument is passed as an int. If not, the
pointer to the string value is passed. You are responsible to make sure a string is pre-extended
long enough to receive any result that might be written into a string. If your integer arguments
are not literals and have nev er been interpreted in a numeric context, you may need to add 0 to
them to force them to look like numbers.

require ’syscall.ph’;# may need to run h2ph
syscall(&SYS_write, fileno(STDOUT), "hi there\n", 9);

sysread(FILEHANDLE,SCALAR,LENGTH,OFFSET)

sysread(FILEHANDLE,SCALAR,LENGTH)
Attempts to read LENGTH bytes of data into variable SCALAR from the specified FILEHAN-
DLE, using the system call read(2). It bypasses stdio, so mixing this with other kinds of reads
may cause confusion. Returns the number of bytes actually read, or undef if there was an error.
SCALAR will be grown or shrunk to the length actually read. An OFFSET may be specified to
place the read data at some other place than the beginning of the string.

system(LIST)

system LIST
Does exactly the same thing as ‘‘exec LIST’’ except that a fork is done first, and the parent pro-
cess waits for the child process to complete. Note that argument processing varies depending on
the number of arguments. The return value is the exit status of the program as returned by the
wait() call. To get the actual exit value divide by 256. See alsoexec.

syswrite(FILEHANDLE,SCALAR,LENGTH,OFFSET)

syswrite(FILEHANDLE,SCALAR,LENGTH)
Attempts to write LENGTH bytes of data from variable SCALAR to the specified FILEHAN-
DLE, using the system call write(2). It bypasses stdio, so mixing this with prints may cause con-
fusion. Returns the number of bytes actually written, or undef if there was an error. An OFFSET
may be specified to place the read data at some other place than the beginning of the string.

tell(FILEHANDLE)

tell FILEHANDLE

tell Returns the current file position for FILEHANDLE. FILEHANDLE may be an expression
whose value gives the name of the actual filehandle. If FILEHANDLE is omitted, assumes the
file last read.

SMM:19-48 The PERL Programming Language

telldir(DIRHANDLE)

telldir DIRHANDLE
Returns the current position of the readdir() routines on DIRHANDLE. Value may be given to
seekdir() to access a particular location in a directory. Has the same caveats about possible direc-
tory compaction as the corresponding system library routine.

time Returns the number of non-leap seconds since 00:00:00 UTC, January 1, 1970. Suitable for feed-
ing to gmtime() and localtime().

times Returns a four-element array giving the user and system times, in seconds, for this process and
the children of this process.

($user,$system,$cuser,$csystem) = times;

tr/SEARCHLIST/REPLACEMENTLIST/cds

y/SEARCHLIST/REPLACEMENTLIST/cds
Translates all occurrences of the characters found in the search list with the corresponding char-
acter in the replacement list. It returns the number of characters replaced or deleted. If no string
is specified via the =˜ or !˜ operator, the $_ string is translated. (The string specified with =˜ must
be a scalar variable, an array element, or an assignment to one of those, i.e. an lvalue.) Forsed
devotees,y is provided as a synonym fortr. If the SEARCHLIST is delimited by bracketing
quotes, the REPLACEMENTLIST has its own pair of quotes, which may or may not be bracket-
ing quotes, e.g. tr[A-Z][a-z] or tr(+-*/)/ABCD/.

If the c modifier is specified, the SEARCHLIST character set is complemented. If the d modifier
is specified, any characters specified by SEARCHLIST that are not found in REPLACE-
MENTLIST are deleted. (Note that this is slightly more flexible than the behavior of sometr
programs, which delete anything they find in the SEARCHLIST, period.) If the s modifier is
specified, sequences of characters that were translated to the same character are squashed down to
1 instance of the character.

If the d modifier was used, the REPLACEMENTLIST is always interpreted exactly as specified.
Otherwise, if the REPLACEMENTLIST is shorter than the SEARCHLIST, the final character is
replicated till it is long enough. If the REPLACEMENTLIST is null, the SEARCHLIST is repli-
cated. This latter is useful for counting characters in a class, or for squashing character sequences
in a class.

Examples:

$ARGV[1] =˜ y/A−Z/a−z/; # canonicalize to lower case

$cnt = tr/*/*/; # count the stars in $_

$cnt = tr/0−9//; # count the digits in $_

tr/a−zA−Z//s; # bookkeeper −> bokeper

($HOST = $host) =˜ tr/a−z/A−Z/;

y/a−zA−Z/ /cs; # change non-alphas to single space

tr/\200−\377/\0−\177/; # delete 8th bit

truncate(FILEHANDLE,LENGTH)

The PERL Programming Language SMM:19-49

truncate(EXPR,LENGTH)
Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length. Pro-
duces a fatal error if truncate isn’t implemented on your system.

umask(EXPR)

umask EXPR

umask Sets the umask for the process and returns the old one. If EXPR is omitted, merely returns cur-
rent umask.

undef(EXPR)

undef EXPR

undef Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an entire
array, or a subroutine name (using &). (Undef will probably not do what you expect on most pre-
defined variables or dbm array values.) Always returns the undefined value. You can omit the
EXPR, in which case nothing is undefined, but you still get an undefined value that you could, for
instance, return from a subroutine. Examples:

undef $foo;
undef $bar{’blurfl’};
undef @ary;
undef %assoc;
undef &mysub;
return (wantarray ? () : undef) if $they_blew_it;

unlink(LIST)

unlink LIST
Deletes a list of files. Returns the number of files successfully deleted.

$cnt = unlink ´a´, ´b´, ´c´;
unlink @goners;
unlink <*.bak>;

Note: unlink will not delete directories unless you are superuser and the−U flag is supplied to
perl. Even if these conditions are met, be warned that unlinking a directory can inflict damage on
your filesystem. Use rmdir instead.

unpack(TEMPLATE,EXPR)
Unpack does the reverse of pack: it takes a string representing a structure and expands it out into
an array value, returning the array value. (In a scalar context, it merely returns the first value pro-
duced.) The TEMPLATE has the same format as in the pack function. Here’s a subroutine that
does substring:

sub substr {
local($what,$where,$howmuch) = @_;
unpack("x$where a$howmuch", $what);
}

and then there’s

sub ord { unpack("c",$_[0]); }

In addition, you may prefix a field with a %<number> to indicate that you want a <number>-bit
checksum of the items instead of the items themselves. Default is a 16-bit checksum. For exam-
ple, the following computes the same number as the System V sum program:

SMM:19-50 The PERL Programming Language

while (<>) {
$checksum += unpack("%16C*", $_);

}
$checksum %= 65536;

unshift(ARRAY,LIST)
Does the opposite of ashift. Or the opposite of apush, depending on how you look at it.
Prepends list to the front of the array, and returns the number of elements in the new array.

unshift(ARGV, ´−e´) unless $ARGV[0] =˜ /ˆ−/;

utime(LIST)

utime LIST
Changes the access and modification times on each file of a list of files. The first two elements of
the list must be the NUMERICAL access and modification times, in that order. Returns the num-
ber of files successfully changed. The inode modification time of each file is set to the current
time. Example of a ‘‘touch’’ command:

#!/usr/bin/perl
$now = time;
utime $now, $now, @ARGV;

values(ASSOC_ARRAY)

values ASSOC_ARRAY
Returns a normal array consisting of all the values of the named associative array. The values are
returned in an apparently random order, but it is the same order as either the keys() or each()
function would produce on the same array. See also keys() and each().

vec(EXPR,OFFSET,BITS)
Treats a string as a vector of unsigned integers, and returns the value of the bitfield specified.
May also be assigned to. BITS must be a power of two from 1 to 32.

Vectors created with vec() can also be manipulated with the logical operators, & and ˆ, which
will assume a bit vector operation is desired when both operands are strings. This interpretation
is not enabled unless there is at least one vec() in your program, to protect older programs.

To transform a bit vector into a string or array of 0’s and 1’s, use these:

$bits = unpack("b*", $vector);
@bits = split(//, unpack("b*", $vector));

If you know the exact length in bits, it can be used in place of the *.

wait Waits for a child process to terminate and returns the pid of the deceased process, or -1 if there
are no child processes. The status is returned in $?.

waitpid(PID,FLAGS)
Waits for a particular child process to terminate and returns the pid of the deceased process, or -1
if there is no such child process. The status is returned in $?. If you say

require "sys/wait.h";
. . .
waitpid(-1,&WNOHANG);

then you can do a non-blocking wait for any process. Non-blocking wait is only available on
machines supporting either thewaitpid(2) or wait4(2) system calls. However, waiting for a

The PERL Programming Language SMM:19-51

particular pid with FLAGS of 0 is implemented everywhere. (Perl emulates the system call by
remembering the status values of processes that have exited but have not been harvested by the
Perl script yet.)

wantarray Returns true if the context of the currently executing subroutine is looking for an array value.
Returns false if the context is looking for a scalar.

return wantarray ? () : undef;

warn(LIST)

warn LISTProduces a message on STDERR just like ‘‘die’’, but doesn’t exit.

write(FILEHANDLE)

write(EXPR)

write Writes a formatted record (possibly multi-line) to the specified file, using the format associated
with that file. By default the format for a file is the one having the same name is the filehandle,
but the format for the current output channel (seeselect) may be set explicitly by assigning the
name of the format to the $˜ variable.

Top of form processing is handled automatically: if there is insufficient room on the current page
for the formatted record, the page is advanced by writing a form feed, a special top-of-page for-
mat is used to format the new page header, and then the record is written. By default the top-of-
page format is the name of the filehandle with ‘‘_TOP’’ appended, but it may be dynamicallly set
to the format of your choice by assigning the name to the $ˆ variable while the filehandle is
selected. The number of lines remaining on the current page is in variable $-, which can be set to
0 to force a new page.

If FILEHANDLE is unspecified, output goes to the current default output channel, which starts
out asSTDOUT but may be changed by theselectoperator. If the FILEHANDLE is an EXPR,
then the expression is evaluated and the resulting string is used to look up the name of the FILE-
HANDLE at run time. For more on formats, see the section on formats later on.

Note that write is NOT the opposite of read.

6. Precedence
Perl operators have the following associativity and precedence:

nonassoc print printf exec system sort reverse
chmod chown kill unlink utime die return

left ,
right = += −= *= etc.
right ?:
nonassoc . .
left
left &&
left ˆ
left &
nonassoc == != <=> eq ne cmp
nonassoc < > <= >= lt gt le ge
nonassoc chdir exit eval reset sleep rand umask
nonassoc −r −w −x etc.
left << >>
left + − .
left * / % x
left =˜ !˜
right ! ˜ and unary minus

SMM:19-52 The PERL Programming Language

right **
nonassoc ++ − −
left ‘(’

As mentioned earlier, if any list operator (print, etc.) or any unary operator (chdir, etc.) is followed by a left
parenthesis as the next token on the same line, the operator and arguments within parentheses are taken to
be of highest precedence, just like a normal function call. Examples:

chdir $foo die; # (chdir $foo) die
chdir($foo) die; # (chdir $foo) die
chdir ($foo) die; # (chdir $foo) die
chdir +($foo) die; # (chdir $foo) die

but, because * is higher precedence than:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

In the absence of parentheses, the precedence of list operators such as print, sort or chmod is either very
high or very low depending on whether you look at the left side of operator or the right side of it. For
example, in

@ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas on the left are evaluated
after. In other words, list operators tend to gobble up all the arguments that follow them, and then act like a
simple term with regard to the preceding expression. Note that you have to be careful with parens:

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor is this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.
print ($foo), exit; # Or even this.

Also note that

print ($foo & 255) + 1, "\n";

probably doesn’t do what you expect at first glance.

The PERL Programming Language SMM:19-53

7. Subroutines
A subroutine may be declared as follows:

sub NAME BLOCK

Any arguments passed to the routine come in as array @_, that is ($_[0], $_[1], . . .). The array @_ is
a local array, but its values are references to the actual scalar parameters. The return value of the subroutine
is the value of the last expression evaluated, and can be either an array value or a scalar value. Alternately,
a return statement may be used to specify the returned value and exit the subroutine. To create local vari-
ables see thelocal operator.

A subroutine is called using thedo operator or the & operator.

Example:

sub MAX {
local($max) = pop(@_);
foreach $foo (@_) {

$max = $foo if $max < $foo;
}
$max;

}

. . .
$bestday = &MAX($mon,$tue,$wed,$thu,$fri);

Example:

get a line, combining continuation lines
that start with whitespace
sub get_line {

$thisline = $lookahead;
line: while ($lookahead = <STDIN>) {

if ($lookahead =˜ / ˆ[\ t] /) {
$thisline .= $lookahead;

}
else {

last line;
}

}
$thisline;

}

$lookahead = <STDIN>; # get first line
while ($_ = do get_line()) {

. . .
}

Use array assignment to a local list to name your formal arguments:

sub maybeset {
local($key, $value) = @_;
$foo{$key} = $value unless $foo{$key};

}

SMM:19-54 The PERL Programming Language

This also has the effect of turning call-by-reference into call-by-value, since the assignment copies the val-
ues.

Subroutines may be called recursively. If a subroutine is called using the & form, the argument list is
optional. If omitted, no @_ array is set up for the subroutine; the @_ array at the time of the call is visible
to subroutine instead.

do foo(1,2,3); # pass three arguments
&foo(1,2,3); # the same

do foo(); # pass a null list
&foo(); # the same
&foo; # pass no arguments— more efficient

8. Passing By Reference
Sometimes you don’t want to pass the value of an array to a subroutine but rather the name of it, so

that the subroutine can modify the global copy of it rather than working with a local copy. In perl you can
refer to all the objects of a particular name by prefixing the name with a star: *foo. When evaluated, it pro-
duces a scalar value that represents all the objects of that name, including any filehandle, format or subrou-
tine. When assigned to within a local() operation, it causes the name mentioned to refer to whatever *
value was assigned to it. Example:

sub doubleary {
local(*someary) = @_;
foreach $elem (@someary) {

$elem *= 2;
}

}
do doubleary(*foo);
do doubleary(*bar);

Assignment to *name is currently recommended only inside a local(). You can actually assign to *name
anywhere, but the previous referent of *name may be stranded forever. This may or may not bother you.

Note that scalars are already passed by reference, so you can modify scalar arguments without using this
mechanism by referring explicitly to the $_[nnn] in question. You can modify all the elements of an array
by passing all the elements as scalars, but you have to use the * mechanism to push, pop or change the size
of an array. The * mechanism will probably be more efficient in any case.

Since a *name value contains unprintable binary data, if it is used as an argument in a print, or as a %s
argument in a printf or sprintf, it then has the value ’*name’, just so it prints out pretty.

Even if you don’t want to modify an array, this mechanism is useful for passing multiple arrays in a single
LIST, since normally the LIST mechanism will merge all the array values so that you can’t extract out the
individual arrays.

9. Regular Expressions
The patterns used in pattern matching are regular expressions such as those supplied in the Version 8

regexp routines. (In fact, the routines are derived from Henry Spencer’s freely redistributable reimplemen-
tation of the V8 routines.) In addition, \w matches an alphanumeric character (including ‘‘_’’) and \W a
nonalphanumeric. Word boundaries may be matched by \b, and non-boundaries by \B. A whitespace char-
acter is matched by \s, non-whitespace by \S. A numeric character is matched by \d, non-numeric by \D.
You may use \w, \s and \d within character classes. Also, \n, \r, \f, \t and \NNN have their normal interpre-
tations. Within character classes \b represents backspace rather than a word boundary. Alternatives may be
separated by. The bracketing construct (. . .) may also be used, in which case \<digit> matches the

The PERL Programming Language SMM:19-55

digit’th substring. (Outside of the pattern, always use $ instead of \ in front of the digit. The scope of
$<digit> (and $`, $& and $´) extends to the end of the enclosing BLOCK or eval string, or to the next pat-
tern match with subexpressions. The \<digit> notation sometimes works outside the current pattern, but
should not be relied upon.) You may have as many parentheses as you wish. If you have more than 9 sub-
strings, the variables $10, $11, ... refer to the corresponding substring. Within the pattern, \10, \11, etc.
refer back to substrings if there have been at least that many left parens before the backreference. Other-
wise (for backward compatibilty) \10 is the same as \010, a backspace, and \11 the same as \011, a tab. And
so on. (\1 through \9 are always backreferences.)

$+ returns whatever the last bracket match matched. $& returns the entire matched string. ($0 used
to return the same thing, but not any more.) $` returns everything before the matched string. $´ returns
ev erything after the matched string. Examples:

s/ ̂ ([ˆ]*) *([ˆ] *) / $2 $1 /; # swap first two words

if (/ Time: (. .): (. .): (. .) /) {
$hours = $1;
$minutes = $2;
$seconds = $3;

}

By default, the ˆ character is only guaranteed to match at the beginning of the string, the $ character only at
the end (or before the newline at the end) andperl does certain optimizations with the assumption that the
string contains only one line. The behavior of ˆ and $ on embedded newlines will be inconsistent. You
may, howev er, wish to treat a string as a multi-line buffer, such that the ˆ will match after any newline
within the string, and $ will match before any newline. At the cost of a little more overhead, you can do
this by setting the variable $* to 1. Setting it back to 0 makesperl revert to its old behavior.

To facilitate multi-line substitutions, the . character never matches a newline (even when $* is 0). In
particular, the following leaves a newline on the $_ string:

$_ = <STDIN>;
s/.*(some_string).*/$1/;

If the newline is unwanted, try one of

s/.*(some_string).*\n/$1/;
s/.*(some_string)[ˆ\000]*/$1/;
s/.*(some_string)(.\n)*/$1/;
chop; s/.*(some_string).*/$1/;
/(some_string)/ && ($_ = $1);

Any item of a regular expression may be followed with digits in curly brackets of the form {n,m}, where n
gives the minimum number of times to match the item and m gives the maximum. The form {n} is equiv-
alent to {n,n} and matches exactly n times. The form {n,} matches n or more times. (If a curly bracket
occurs in any other context, it is treated as a regular character.) The * modifier is equivalent to {0,}, the +
modifier to {1,} and the ? modifier to {0,1}. There is no limit to the size of n or m, but large numbers will
chew up more memory.

You will note that all backslashed metacharacters inperl are alphanumeric, such as \b, \w, \n. Unlike some
other regular expression languages, there are no backslashed symbols that aren’t alphanumeric. So any-
thing that looks like \\, \(, \), \<, \>, \{, or \} is always interpreted as a literal character, not a metacharacter.
This makes it simple to quote a string that you want to use for a pattern but that you are afraid might con-
tain metacharacters. Simply quote all the non-alphanumeric characters:

$pattern =˜ s/(\W)/\\$1/g;

SMM:19-56 The PERL Programming Language

10. Formats
Output record formats for use with thewrite operator may declared as follows:

format NAME =
FORMLIST
.

If name is omitted, format ‘‘STDOUT’’ is defined. FORMLIST consists of a sequence of lines, each of
which may be of one of three types:

1. A comment.

2. A ‘‘picture’’ line giving the format for one output line.

3. An argument line supplying values to plug into a picture line.

Picture lines are printed exactly as they look, except for certain fields that substitute values into the
line. Each picture field starts with either @ or ˆ. The @ field (not to be confused with the array marker @)
is the normal case; ˆ fields are used to do rudimentary multi-line text block filling. The length of the field is
supplied by padding out the field with multiple <, >, or characters to specify, respectively, left justifica-
tion, right justification, or centering. As an alternate form of right justification, you may also use # charac-
ters (with an optional .) to specify a numeric field. (Use of ˆ instead of @ causes the field to be blanked if
undefined.) If any of the values supplied for these fields contains a newline, only the text up to the newline
is printed. The special field @* can be used for printing multi-line values. It should appear by itself on a
line.

The values are specified on the following line, in the same order as the picture fields. The values
should be separated by commas.

Picture fields that begin with ˆ rather than @ are treated specially. The value supplied must be a
scalar variable name which contains a text string.Perl puts as much text as it can into the field, and then
chops off the front of the string so that the next time the variable is referenced, more of the text can be
printed. Normally you would use a sequence of fields in a vertical stack to print out a block of text. If you
like, you can end the final field with . . ., which will appear in the output if the text was too long to appear in
its entirety. You can change which characters are legal to break on by changing the variable $: to a list of
the desired characters.

Since use of ˆ fields can produce variable length records if the text to be formatted is short, you can
suppress blank lines by putting the tilde (˜) character anywhere in the line. (Normally you should put it in
the front if possible, for visibility.) The tilde will be translated to a space upon output. If you put a second
tilde contiguous to the first, the line will be repeated until all the fields on the line are exhausted. (If you
use a field of the @ variety, the expression you supply had better not give the same value every time for-
ev er!)

Examples:

a report on the /etc/passwd file
format STDOUT_TOP =

Passwd File
Name Login Office Uid Gid Home
--
.
format STDOUT =
@<<<<<<<<<<<<<<<<<< @ @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
$name, $login, $office,$uid,$gid, $home
.

T h e PERL P r o g r amm i n g L an g u a g e SMM: 1 9 - 5 7

a report from a bug report form
format STDOUT_TOP =

Bug Reports
@<<<<<<<<<<<<<<<<<<<<<<< @ @>>>>>>>>>>>>>>>>>>>>>>>
$system, $%, $date
--
.
format STDOUT =
Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$subject
Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$index, $description
Priority: @<<<<<<<<<< Date: @<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$priority, $date, $description
From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$from, $description
Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$programmer, $description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$description
˜ ˆ<<<<<<<<<<<<<<<<<<<<<<<...

$description
.

It is possible to intermix prints with writes on the same output channel, but you’ll have to handle $− (lines
left on the page) yourself.

If you are printing lots of fields that are usually blank, you should consider using the reset operator
between records. Not only is it more efficient, but it can prevent the bug of adding another field and forget-
ting to zero it.

11. Interprocess Communication
The IPC facilities of perl are built on the Berkeley socket mechanism. If you don’t hav e sockets, you

can ignore this section. The calls have the same names as the corresponding system calls, but the argu-
ments tend to differ, for two reasons. First, perl file handles work differently than C file descriptors. Sec-
ond, perl already knows the length of its strings, so you don’t need to pass that information. Here is a sam-
ple client (untested):

($them,$port) = @ARGV;
$port = 2345 unless $port;
$them = ’localhost’ unless $them;

$SIG{’INT’} = ’dokill’;
sub dokill { kill 9,$child if $child; }

require ’sys/socket.ph’;

$sockaddr = ’S n a4 x8’;
chop($hostname = ‘hostname‘);

SMM:19-58 The PERL Programming Language

($name, $aliases, $proto) = getprotobyname(’tcp’);
($name, $aliases, $port) = getservbyname($port, ’tcp’)

unless $port =˜ /ˆ\d+$/;
($name, $aliases, $type, $len, $thisaddr) = gethostbyname($hostname);
($name, $aliases, $type, $len, $thataddr) = gethostbyname($them);

$this = pack($sockaddr, &AF_INET, 0, $thisaddr);
$that = pack($sockaddr, &AF_INET, $port, $thataddr);

socket(S, &PF_INET, &SOCK_STREAM, $proto) die "socket: $!";
bind(S, $this) die "bind: $!";
connect(S, $that) die "connect: $!";

select(S); $ = 1; select(stdout);

if ($child = fork) {
while (<>) {

print S;
}
sleep 3;
do dokill();

}
else {

while (<S>) {
print;

}
}

And here’s a server:

($port) = @ARGV;
$port = 2345 unless $port;

require ’sys/socket.ph’;

$sockaddr = ’S n a4 x8’;

($name, $aliases, $proto) = getprotobyname(’tcp’);
($name, $aliases, $port) = getservbyname($port, ’tcp’)

unless $port =˜ /ˆ\d+$/;

$this = pack($sockaddr, &AF_INET, $port, "\0\0\0\0");

select(NS); $ = 1; select(stdout);

socket(S, &PF_INET, &SOCK_STREAM, $proto) die "socket: $!";
bind(S, $this) die "bind: $!";
listen(S, 5) die "connect: $!";

select(S); $ = 1; select(stdout);

for (;;) {
print "Listening again\n";
($addr = accept(NS,S)) die $!;

The PERL Programming Language SMM:19-59

print "accept ok\n";

($af,$port,$inetaddr) = unpack($sockaddr,$addr);
@inetaddr = unpack(’C4’,$inetaddr);
print "$af $port @inetaddr\n";

while (<NS>) {
print;
print NS;

}
}

12. Predefined Names
The following names have special meaning toperl. I could have used alphabetic symbols for some

of these, but I didn’t want to take the chance that someone would say reset ‘‘a−zA−Z’’ and wipe them all
out. You’ll just have to suffer along with these silly symbols. Most of them have reasonable mnemonics,
or analogues in one of the shells.

$_ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) { . . .# only equivalent in while!
while ($_ = <>) { . . .

/ ˆSubject:/
$_ =˜ / ˆSubject:/

y/a−z/A−Z/
$_ =˜ y/a−z/A−Z/

chop
chop($_)

(Mnemonic: underline is understood in certain operations.)

$. The current input line number of the last filehandle that was read. Readonly. Remember that
only an explicit close on the filehandle resets the line number. Since <> never does an explicit
close, line numbers increase across ARGV files (but see examples under eof). (Mnemonic: many
programs use . to mean the current line number.)

$/ The input record separator, newline by default. Works likeawk’s RS variable, including treating
blank lines as delimiters if set to the null string. You may set it to a multicharacter string to
match a multi-character delimiter. Note that setting it to "\n\n" means something slightly differ-
ent than setting it to "", if the file contains consecutive blank lines. Setting it to "" will treat two
or more consecutive blank lines as a single blank line. Setting it to "\n\n" will blindly assume that
the next input character belongs to the next paragraph, even if it’s a newline. (Mnemonic: / is
used to delimit line boundaries when quoting poetry.)

$, The output field separator for the print operator. Ordinarily the print operator simply prints out
the comma separated fields you specify. In order to get behavior more likeawk, set this variable
as you would setawk’s OFS variable to specify what is printed between fields. (Mnemonic: what
is printed when there is a , in your print statement.)

$"" This is like $, except that it applies to array values interpolated into a double-quoted string (or
similar interpreted string). Default is a space. (Mnemonic: obvious, I think.)

SMM:19-60 The PERL Programming Language

$\ The output record separator for the print operator. Ordinarily the print operator simply prints out
the comma separated fields you specify, with no trailing newline or record separator assumed. In
order to get behavior more likeawk, set this variable as you would setawk’s ORS variable to
specify what is printed at the end of the print. (Mnemonic: you set $\ instead of adding \n at the
end of the print. Also, it’s just like /, but it’s what you get ‘‘back’’ fromperl.)

$# The output format for printed numbers. This variable is a half-hearted attempt to emulateawk’s
OFMT variable. There are times, however, whenawk andperl have differing notions of what is
in fact numeric. Also, the initial value is %.20g rather than %.6g, so you need to set $# explicitly
to getawk’s value. (Mnemonic: # is the number sign.)

$% The current page number of the currently selected output channel. (Mnemonic: % is page num-
ber in nroff.)

$= The current page length (printable lines) of the currently selected output channel. Default is 60.
(Mnemonic: = has horizontal lines.)

$− The number of lines left on the page of the currently selected output channel. (Mnemonic:
lines_on_page − lines_printed.)

$˜ The name of the current report format for the currently selected output channel. Default is name
of the filehandle. (Mnemonic: brother to $ˆ.)

$ˆ The name of the current top-of-page format for the currently selected output channel. Default is
name of the filehandle with ‘‘_TOP’’ appended. (Mnemonic: points to top of page.)

$ If set to nonzero, forces a flush after every write or print on the currently selected output channel.
Default is 0. Note thatSTDOUT will typically be line buffered if output is to the terminal and
block buffered otherwise. Setting this variable is useful primarily when you are outputting to a
pipe, such as when you are running aperl script under rsh and want to see the output as it’s hap-
pening. (Mnemonic: when you want your pipes to be piping hot.)

$$ The process number of theperl running this script. (Mnemonic: same as shells.)

$? The status returned by the last pipe close, backtick (``) command orsystemoperator. Note that
this is the status word returned by the wait() system call, so the exit value of the subprocess is
actually ($? >> 8). $? & 255 gives which signal, if any, the process died from, and whether there
was a core dump. (Mnemonic: similar to sh and ksh.)

$& The string matched by the last successful pattern match (not counting any matches hidden within
a BLOCK or eval enclosed by the current BLOCK). (Mnemonic: like & in some editors.)

$` The string preceding whatever was matched by the last successful pattern match (not counting
any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnemonic: `
often precedes a quoted string.)

$´ The string following whatever was matched by the last successful pattern match (not counting
any matches hidden within a BLOCK or eval enclosed by the current BLOCK). (Mnemonic: ´
often follows a quoted string.) Example:

$_ = ´abcdefghi´;
/def/;
print "$`:$&:$´\n"; # prints abc:def:ghi

$+ The last bracket matched by the last search pattern. This is useful if you don’t know which of a
set of alternative patterns matched. For example:

/Version: (.*)Revision: (.*) / && ($rev = $+);

(Mnemonic: be positive and forward looking.)

$* Set to 1 to do multiline matching within a string, 0 to tellperl that it can assume that strings con-
tain a single line, for the purpose of optimizing pattern matches. Pattern matches on strings

The PERL Programming Language SMM:19-61

containing multiple newlines can produce confusing results when $* is 0. Default is 0.
(Mnemonic: * matches multiple things.) Note that this variable only influences the interpretation
of ˆ and $. A literal newline can be searched for even when $* == 0.

$0 Contains the name of the file containing theperl script being executed. Assigning to $0 modifies
the argument area that the ps(1) program sees. (Mnemonic: same as sh and ksh.)

$<digit> Contains the subpattern from the corresponding set of parentheses in the last pattern matched, not
counting patterns matched in nested blocks that have been exited already. (Mnemonic: like
\digit.)

$[The index of the first element in an array, and of the first character in a substring. Default is 0,
but you could set it to 1 to makeperl behave more likeawk (or Fortran) when subscripting and
when evaluating the index() and substr() functions. (Mnemonic: [begins subscripts.)

$] The string printed out when you say ‘‘perl -v’’. It can be used to determine at the beginning of a
script whether the perl interpreter executing the script is in the right range of versions. If used in
a numeric context, returns the version + patchlevel / 1000. Example:

see if getc is available
($version,$patchlevel) =

$] =˜ /(\d+\.\d+).*\nPatch level: (\d+)/;
print STDERR "(No filename completion available.)\n"

if $version * 1000 + $patchlevel < 2016;

or, used numerically,

warn "No checksumming!\n" if $] < 3.019;

(Mnemonic: Is this version of perl in the right bracket?)

$; The subscript separator for multi-dimensional array emulation. If you refer to an associative
array element as

$foo{$a,$b,$c}

it really means

$foo{join($;, $a, $b, $c)}

But don’t put

@foo{$a,$b,$c}# a slice— note the @

which means

($foo{$a},$foo{$b},$foo{$c})

Default is "\034", the same as SUBSEP inawk. Note that if your keys contain binary data there
might not be any safe value for $;. (Mnemonic: comma (the syntactic subscript separator) is a
semi-semicolon. Yeah, I know, it’s pretty lame, but $, is already taken for something more impor-
tant.)

$! If used in a numeric context, yields the current value of errno, with all the usual caveats. (This
means that you shouldn’t depend on the value of $! to be anything in particular unless you’ve got-
ten a specific error return indicating a system error.) If used in a string context, yields the corre-
sponding system error string. You can assign to $! in order to set errno if, for instance, you want
$! to return the string for error n, or you want to set the exit value for the die operator.
(Mnemonic: What just went bang?)

SMM:19-62 The PERL Programming Language

$@ The perl syntax error message from the last eval command. If null, the last eval parsed and
executed correctly (although the operations you invoked may have failed in the normal fashion).
(Mnemonic: Where was the syntax error ‘‘at’’?)

$< The real uid of this process. (Mnemonic: it’s the uid you came FROM, if you’re running setuid.)

$> The effective uid of this process. Example:

$< = $>;# set real uid to the effective uid
($<,$>) = ($>,$<);# swap real and effective uid

(Mnemonic: it’s the uid you went TO, if you’re running setuid.) Note: $< and $> can only be
swapped on machines supporting setreuid().

$(The real gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned by getgid(), and the subsequent ones by getgroups(), one of which may be the same
as the first number. (Mnemonic: parentheses are used to GROUP things. The real gid is the
group you LEFT, if you’re running setgid.)

$) The effective gid of this process. If you are on a machine that supports membership in multiple
groups simultaneously, giv es a space separated list of groups you are in. The first number is the
one returned by getegid(), and the subsequent ones by getgroups(), one of which may be the same
as the first number. (Mnemonic: parentheses are used to GROUP things. The effective gid is the
group that’s RIGHT for you, if you’re running setgid.)

Note: $<, $>, $(and $) can only be set on machines that support the corresponding set[re][ug]id()
routine. $(and $) can only be swapped on machines supporting setregid().

$: The current set of characters after which a string may be broken to fill continuation fields (start-
ing with ˆ) in a format. Default is " \n-", to break on whitespace or hyphens. (Mnemonic: a
‘‘colon’’ in poetry is a part of a line.)

$ˆD The current value of the debugging flags. (Mnemonic: value of−D switch.)

$ˆF The maximum system file descriptor, ordinarily 2. System file descriptors are passed to subpro-
cesses, while higher file descriptors are not. During an open, system file descriptors are preserved
ev en if the open fails. Ordinary file descriptors are closed before the open is attempted.

$ˆI The current value of the inplace-edit extension. Use undef to disable inplace editing.
(Mnemonic: value of−i switch.)

$ˆL What formats output to perform a formfeed. Default is \f.

$ˆP The internal flag that the debugger clears so that it doesn’t debug itself. You could conceivable
disable debugging yourself by clearing it.

$ˆT The time at which the script began running, in seconds since the epoch. The values returned by
the−M , −A and−C filetests are based on this value.

$ˆW The current value of the warning switch. (Mnemonic: related to the−w switch.)

$ˆX The name that Perl itself was executed as, from argv[0].

$ARGV contains the name of the current file when reading from <>.

@ARGV The array ARGV contains the command line arguments intended for the script. Note that
$#ARGV is the generally number of arguments minus one, since $ARGV[0] is the first argument,
NOT the command name. See $0 for the command name.

@INC The array INC contains the list of places to look forperl scripts to be evaluated by the ‘‘do
EXPR’’ command or the ‘‘require’’ command. It initially consists of the arguments to any−I
command line switches, followed by the defaultperl library, probably ‘‘/usr/local/lib/perl’’, fol-
lowed by ‘‘.’’, to represent the current directory.

The PERL Programming Language SMM:19-63

%INC The associative array INC contains entries for each filename that has been included via ‘‘do’’ or
‘‘require’’. The key is the filename you specified, and the value is the location of the file actually
found. The ‘‘require’’ command uses this array to determine whether a given file has already
been included.

$ENV{expr}
The associative array ENV contains your current environment. Setting a value in ENV changes
the environment for child processes.

$SIG{expr}
The associative array SIG is used to set signal handlers for various signals. Example:

sub handler {# 1st argument is signal name
local($sig) = @_;
print "Caught a SIG$sig− −shutting down\n";
close(LOG);
exit(0);
}

$SIG{´INT´} = ´handler´;
$SIG{´QUIT´} = ´handler´;
. . .
$SIG{´INT´} = ´DEFAULT´;# restore default action
$SIG{´QUIT´} = ´IGNORE´;# ignore SIGQUIT

The SIG array only contains values for the signals actually set within the perl script.

13. Packages
Perl provides a mechanism for alternate namespaces to protect packages from stomping on each oth-

ers variables. By default, a perl script starts compiling into the package known as ‘‘main’’. By use of the
packagedeclaration, you can switch namespaces. The scope of the package declaration is from the decla-
ration itself to the end of the enclosing block (the same scope as the local() operator). Typically it would be
the first declaration in a file to be included by the ‘‘require’’ operator. You can switch into a package in
more than one place; it merely influences which symbol table is used by the compiler for the rest of that
block. You can refer to variables and filehandles in other packages by prefixing the identifier with the pack-
age name and a single quote. If the package name is null, the ‘‘main’’ package as assumed.

Only identifiers starting with letters are stored in the packages symbol table. All other symbols are
kept in package ‘‘main’’. In addition, the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT,
ENV, INC and SIG are forced to be in package ‘‘main’’, even when used for other purposes than their built-
in one. Note also that, if you have a package called ‘‘m’’, ‘‘s’’ or ‘‘y’’, the you can’t use the qualified form
of an identifier since it will be interpreted instead as a pattern match, a substitution or a translation.

Eval’ed strings are compiled in the package in which the eval was compiled in. (Assignments to
$SIG{}, however, assume the signal handler specified is in the main package. Qualify the signal handler
name if you wish to have a signal handler in a package.) For an example, examine perldb.pl in the perl
library. It initially switches to the DB package so that the debugger doesn’t interfere with variables in the
script you are trying to debug. At various points, however, it temporarily switches back to the main pack-
age to evaluate various expressions in the context of the main package.

The symbol table for a package happens to be stored in the associative array of that name prepended
with an underscore. The value in each entry of the associative array is what you are referring to when you
use the *name notation. In fact, the following have the same effect (in package main, anyway), though the
first is more efficient because it does the symbol table lookups at compile time:

local(*foo) = *bar;
local($_main{’foo’}) = $_main{’bar’};

SMM:19-64 The PERL Programming Language

You can use this to print out all the variables in a package, for instance. Here is dumpvar.pl from the perl
library:

package dumpvar;

sub main’dumpvar {
($package) = @_;
local(*stab) = eval("*_$package");
while (($key,$val) = each(%stab)) {

{
local(*entry) = $val;
if (defined $entry) {

print "\$$key = ’$entry’\n";
}
if (defined @entry) {

print "\@$key = (\n";
foreach $num ($[.. $#entry) {

print " $num\t’",$entry[$num],"’\n";
}
print ")\n";

}
if ($key ne "_$package" && defined %entry) {

print "\%$key = (\n";
foreach $key (sort keys(%entry)) {

print " $key\t’",$entry{$key},"’\n";
}
print ")\n";

}
}

}
}

Note that, even though the subroutine is compiled in package dumpvar, the name of the subroutine is quali-
fied so that its name is inserted into package ‘‘main’’.

14. Style
Each programmer will, of course, have his or her own preferences in regards to formatting, but there

are some general guidelines that will make your programs easier to read.

1. Just because you CAN do something a particular way doesn’t mean that you SHOULD do it that way.
Perl is designed to give you several ways to do anything, so consider picking the most readable one.
For instance

open(FOO,$foo) die "Can’t open $foo: $!";

is better than

die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

The PERL Programming Language SMM:19-65

since the main point isn’t whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have to
make use of the defaults. The defaults are there for lazy systems programmers writing one-shot pro-
grams. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because youcan omit parentheses in many places doesn’t mean that you
ought to:

return print reverse sort num values array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in
vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the code
after you, and who will probably put parens in the wrong place.

2. Don’t go through silly contortions to exit a loop at the top or the bottom, whenperl provides the "last"
operator so you can exit in the middle. Just outdent it a little to make it more visible:

line:
for (;;) {

statements;
last line if $foo;

next line if /ˆ#/;
statements;

}

3. Don’t be afraid to use loop labels— they’re there to enhance readability as well as to allow multi-level
loop breaks. See last example.

4. For portability, when using features that may not be implemented on every machine, test the construct
in an eval to see if it fails. If you know what version or patchlevel a particular feature was imple-
mented, you can test $] to see if it will be there.

5. Choose mnemonic identifiers.

6. Be consistent.

15. Debugging
If you invokeperl with a −d switch, your script will be run under a debugging monitor. It will halt

before the first executable statement and ask you for a command, such as:

h Prints out a help message.

T Stack trace.

s Single step. Executes until it reaches the beginning of another statement.

n Next. Executes over subroutine calls, until it reaches the beginning of the next statement.

f Finish. Executes statements until it has finished the current subroutine.

c Continue. Executes until the next breakpoint is reached.

c line Continue to the specified line. Inserts a one-time-only breakpoint at the specified line.

<CR> Repeat last n or s.

l min+incr List incr+1 lines starting at min. If min is omitted, starts where last listing left off. If incr is
omitted, previous value of incr is used.

SMM:19-66 The PERL Programming Language

l min-max List lines in the indicated range.

l line List just the indicated line.

l List next window.

- List previous window.

w line List window around line.

l subname List subroutine. If it’s a long subroutine it just lists the beginning. Use ‘‘l’’ to list more.

/pattern/ Regular expression search forward for pattern; the final / is optional.

?pattern? Regular expression search backward for pattern; the final ? is optional.

L List lines that have breakpoints or actions.

S Lists the names of all subroutines.

t Toggle trace mode on or off.

b line conditionSet a breakpoint. If line is omitted, sets a breakpoint on the line that is about to be
executed. If a condition is specified, it is evaluated each time the statement is reached and a
breakpoint is taken only if the condition is true. Breakpoints may only be set on lines that
begin an executable statement.

b subname condition
Set breakpoint at first executable line of subroutine.

d line Delete breakpoint. If line is omitted, deletes the breakpoint on the line that is about to be
executed.

D Delete all breakpoints.

a line commandSet an action for line. A multi-line command may be entered by backslashing the newlines.

A Delete all line actions.

< command Set an action to happen before every debugger prompt. A multi-line command may be
entered by backslashing the newlines.

> command Set an action to happen after the prompt when you’ve just given a command to return to
executing the script. A multi-line command may be entered by backslashing the newlines.

V package List all variables in package. Default is main package.

! number Redo a debugging command. If number is omitted, redoes the previous command.

! -number Redo the command that was that many commands ago.

H -number Display last n commands. Only commands longer than one character are listed. If number
is omitted, lists them all.

q or ˆD Quit.

command Execute command as a perl statement. A missing semicolon will be supplied.

p expr Same as ‘‘print DB’OUT expr’’. The DB’OUT filehandle is opened to /dev/tty, reg ardless of
where STDOUT may be redirected to.

If you want to modify the debugger, copy perldb.pl from the perl library to your current directory and
modify it as necessary. (You’ll also have to put -I. on your command line.) You can do some customization
by setting up a .perldb file which contains initialization code. For instance, you could make aliases like
these:

$DB’alias{’len’} = ’s/ˆlen(.*)/p length($1)/’;
$DB’alias{’stop’} = ’s/ˆstop (atin)/b/’;
$DB’alias{’.’} =
’s/ˆ\./p "\$DB\’sub(\$DB\’line):\t",\$DB\’line[\$DB\’line]/’;

The PERL Programming Language SMM:19-67

16. Setuid Scripts
Perl is designed to make it easy to write secure setuid and setgid scripts. Unlike shells, which are

based on multiple substitution passes on each line of the script,perl uses a more conventional evaluation
scheme with fewer hidden ‘‘gotchas’’. Additionally, since the language has more built-in functionality, it
has to rely less upon external (and possibly untrustworthy) programs to accomplish its purposes.

In an unpatched 4.2 or 4.3bsd kernel, setuid scripts are intrinsically insecure, but this kernel feature
can be disabled. If it is,perl can emulate the setuid and setgid mechanism when it notices the otherwise
useless setuid/gid bits on perl scripts. If the kernel feature isn’t disabled,perl will complain loudly that
your setuid script is insecure. You’ll need to either disable the kernel setuid script feature, or put a C wrap-
per around the script.

When perl is executing a setuid script, it takes special precautions to prevent you from falling into
any obvious traps. (In some ways, a perl script is more secure than the corresponding C program.) Any
command line argument, environment variable, or input is marked as ‘‘tainted’’, and may not be used,
directly or indirectly, in any command that invokes a subshell, or in any command that modifies files, direc-
tories or processes. Any variable that is set within an expression that has previously referenced a tainted
value also becomes tainted (even if it is logically impossible for the tainted value to influence the variable).
For example:

$foo = shift; # $foo is tainted
$bar = $foo,´bar´; # $bar is also tainted
$xxx = <>; # Tainted
$path = $ENV{´PATH´}; # Tainted, but see below
$abc = ´abc´; # Not tainted

system "echo $foo"; # Insecure
system "/bin/echo", $foo; # Secure (doesn’t use sh)
system "echo $bar"; # Insecure
system "echo $abc"; # Insecure until PATH set

$ENV{´PATH´} = ´/bin:/usr/bin´;
$ENV{´IFS´} = ´´ if $ENV{´IFS´} ne ´´;

$path = $ENV{´PATH´}; # Not tainted
system "echo $abc"; # Is secure now!

open(FOO,"$foo"); # OK
open(FOO,">$foo"); # Not OK

open(FOO,"echo $foo"); # Not OK, but...
open(FOO,"-") exec ´echo´, $foo; # OK

$zzz = ‘echo $foo‘; # Insecure, zzz tainted

unlink $abc,$foo; # Insecure
umask $foo; # Insecure

exec "echo $foo"; # Insecure
exec "echo", $foo; # Secure (doesn’t use sh)
exec "sh", ´-c´, $foo; # Considered secure, alas

The taintedness is associated with each scalar value, so some elements of an array can be tainted, and others
not.

SMM:19-68 The PERL Programming Language

If you try to do something insecure, you will get a fatal error saying something like ‘‘Insecure depen-
dency’’ or ‘‘Insecure PATH’’. Note that you can still write an insecure system call or exec, but only by
explicitly doing something like the last example above. You can also bypass the tainting mechanism by ref-
erencing subpatterns—perl presumes that if you reference a substring using $1, $2, etc, you knew what
you were doing when you wrote the pattern:

$ARGV[0] =˜ /ˆ−P(\w+)$/;
$printer = $1; # Not tainted

This is fairly secure since \w+ doesn’t match shell metacharacters. Use of .+ would have been insecure, but
perl doesn’t check for that, so you must be careful with your patterns. This is the ONLY mechanism for
untainting user supplied filenames if you want to do file operations on them (unless you make $> equal to
$<).

It’s also possible to get into trouble with other operations that don’t care whether they use tainted val-
ues. Make judicious use of the file tests in dealing with any user-supplied filenames. When possible, do
opens and such after setting $> = $<.Perl doesn’t prevent you from opening tainted filenames for reading,
so be careful what you print out. The tainting mechanism is intended to prevent stupid mistakes, not to
remove the need for thought.

17. Traps
Accustomedawkusers should take special note of the following:

* Semicolons are required after all simple statements inperl (except at the end of a block). Newline is
not a statement delimiter.

* Curly brackets are required on ifs and whiles.

* Variables begin with $ or @ inperl.

* Arrays index from 0 unless you set $[. Likewise string positions in substr() and index().

* You have to decide whether your array has numeric or string indices.

* Associative array values do not spring into existence upon mere reference.

* You have to decide whether you want to use string or numeric comparisons.

* Reading an input line does not split it for you. You get to split it yourself to an array. And thesplit
operator has different arguments.

* The current input line is normally in $_, not $0. It generally does not have the newline stripped. ($0 is
the name of the program executed.)

* $<digit> does not refer to fields— it refers to substrings matched by the last match pattern.

* The print statement does not add field and record separators unless you set $, and $\.

* You must open your files before you print to them.

* The range operator is ‘‘. .’’, not comma. (The comma operator works as in C.)

* The match operator is ‘‘=˜’’, not ‘‘˜’’. (‘‘˜’’ is the one’s complement operator, as in C.)

* The exponentiation operator is ‘‘**’’, not ‘‘ˆ’’. (‘‘ˆ’’ is the XOR operator, as in C.)

* The concatenation operator is ‘‘.’’, not the null string. (Using the null string would render ‘‘/pat/ /pat/’’
unparsable, since the third slash would be interpreted as a division operator— the tokener is in fact
slightly context sensitive for operators like /, ?, and <. And in fact, . itself can be the beginning of a
number.)

* Next, exit andcontinuework differently.

* The following variables work differently

Awk Perl
ARGC $#ARGV

The PERL Programming Language SMM:19-69

ARGV[0] $0
FILENAME $ARGV
FNR $. − something
FS (whatever you like)
NF $#Fld, or some such
NR $.
OFMT $#
OFS $,
ORS $\
RLENGTH length($&)
RS $/
RSTART length($`)
SUBSEP $;

* When in doubt, run theawk construct through a2p and see what it gives you.

Cerebral C programmers should take note of the following:

* Curly brackets are required on ifs and whiles.

* You should use ‘‘elsif ’’ rather than ‘‘else if’’

* Break andcontinuebecomelast andnext, respectively.

* There’s no switch statement.

* Variables begin with $ or @ inperl.

* Printf does not implement *.

* Comments begin with #, not /*.

* You can’t take the address of anything.

* ARGV must be capitalized.

* The ‘‘system’’ calls link, unlink, rename, etc. return nonzero for success, not 0.

* Signal handlers deal with signal names, not numbers.

Seasonedsedprogrammers should take note of the following:

* Backreferences in substitutions use $ rather than \.

* The pattern matching metacharacters (,), and do not have backslashes in front.

* The range operator is . . rather than comma.

Sharp shell programmers should take note of the following:

* The backtick operator does variable interpretation without regard to the presence of single quotes in
the command.

* The backtick operator does no translation of the return value, unlike csh.

* Shells (especially csh) do several levels of substitution on each command line.Perl does substitution
only in certain constructs such as double quotes, backticks, angle brackets and search patterns.

* Shells interpret scripts a little bit at a time.Perl compiles the whole program before executing it.

* The arguments are available via @ARGV, not $1, $2, etc.

* The environment is not automatically made available as variables.

18. Errata and Addenda
The Perl book,Programming Perl, has the following omissions and goofs.

On page 5, the examples which read

eval "/usr/bin/perl

SMM:19-70 The PERL Programming Language

should read

eval "exec /usr/bin/perl

On page 195, the equivalent to the System V sum program only works for very small files. To do
larger files, use

undef $/;
$checksum = unpack("%32C*",<>) % 32767;

The descriptions of alarm and sleep refer to signal SIGALARM. These should refer to SIGALRM.

The−0 switch to set the initial value of $/ was added to Perl after the book went to press.

The−l switch now does automatic line ending processing.

The qx// construct is now a synonym for backticks.

$0 may now be assigned to set the argument displayed byps(1).

The new @###.## format was omitted accidentally from the description on formats.

It wasn’t known at press time that s///ee caused multiple evaluations of the replacement expression.
This is to be construed as a feature.

(LIST) x $count now does array replication.

There is now no limit on the number of parentheses in a regular expression.

In double-quote context, more escapes are supported: \e, \a, \x1b, \c[, \l, \L, \u, \U, \E. The latter five
control up/lower case translation.

The$/ variable may now be set to a multi-character delimiter.

There is now a g modifier on ordinary pattern matching that causes it to iterate through a string find-
ing multiple matches.

All of the $ˆX variables are new except for $ˆT.

The default top-of-form format for FILEHANDLE is now FILEHANDLE_TOP rather than top.

The eval {} and sort {} constructs were added in version 4.018.

The v and V (little-endian) template options for pack and unpack were added in 4.019.

